
Restriction of Scalars, the Chabauty–Coleman

Method, and P1 r {0, 1,∞}
by

Nicholas George Triantafillou

Submitted to the Department of Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mathematics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

c○ Nicholas George Triantafillou, MMXIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Mathematics

April 18, 2019

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bjorn Poonen

Claude Shannon Professor of Mathematics

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Davesh Maulik

Chairman, Department Committee on Graduate Theses



2



Restriction of Scalars, the Chabauty–Coleman Method, and

P1 r {0, 1,∞}

by

Nicholas George Triantafillou

Submitted to the Department of Mathematics
on April 18, 2019 , in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Mathematics

Abstract

We extend Siksek’s development of Chabauty’s method for restriction of scalars of
curves to give a method to compute the set of 𝑆-integral points on certain 𝒪𝐾,𝑆-
models 𝒞 of punctured genus 𝑔 curves 𝐶 over a number field 𝐾. Our assumptions on
𝒞 guarantee that it carries a morphism 𝑗 : 𝒞 → 𝒥 to a commutative group scheme 𝒥
over 𝒪𝐾,𝑆 which is analogous to the Abel-Jacobi map from a proper curve of positive
genus to its Jacobian.

While Chabauty’s method (generally) requires that rank𝒥 (𝒪𝐾,𝑆) ≤ dim𝒥𝐾 − 1
in order to compute a finite subset 𝑝-adic points on 𝒞 containing 𝒞(𝒪𝐾,𝑆), Chabauty’s
method for restriction of scalars computes a subset Σ𝒞 of 𝑝-adic points of Res 𝒞 which
contains 𝒞(𝒪𝐾,𝑆). Naïvely, one might expect that Σ𝒞 is finite whenever the RoS
inequality rank𝒥 (𝒪𝐾,𝑆) ≤ [𝐾 : Q](dim𝒥𝐾 − 1) is satisfied. However, even if this
inequality is satisfied, Σ𝒞 can be infinite for geometric reasons, which we call base
change obstructions and full Prym obstructions.

When attempting to compute the 𝒪𝐾,𝑆-points of 𝒞 = P1 r {0, 1,∞}, we show that
𝒞 can be replaced with a suitable descent set D of covers 𝒟, such that for each 𝒟 ∈ D
the RoS Chabauty inequality holds for 𝒟. Although we do not prove that the Σ𝒟
are finite, we do prove that the Σ𝒟 are not forced to be infinite for any of the known
geometric reasons. In other words, there are no base change or full Prym obstructions
to RoS Chabauty for 𝒟.

We also give several examples of the method. For instance, when both 3 splits
completely in𝐾 and [𝐾 : Q] is prime to 3 we show that (P1 r {0, 1,∞})(𝒪𝐾) = ∅. We
also give new proofs that (P1 r {0, 1,∞})(𝒪𝐾) is finite for several classes of number
fields 𝐾 of low degree. These results represent the first infinite class of cases where
Chabauty’s method for restrictions of scalars is proved to succeed where the classical
Chabauty’s method does not.

Thesis Supervisor: Bjorn Poonen
Title: Claude Shannon Professor of Mathematics
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Chapter 1

Introduction

1.1 Overview of methods and results

Let 𝑋 be a smooth, proper, geometrically integral curve over a number field 𝐾.

When the genus 𝑔 of 𝑋 is at least 2, Faltings’ theorem says that the set 𝑋(𝐾) is

finite. Unfortunately, Faltings’ theorem is ineffective. While it is possible to extract

an (extremely large) bound on #𝑋(𝐾) from a careful analysis of Faltings’ method,

it seems implausible that Faltings’ approach could be used to compute the set 𝑋(𝐾).

Fortunately, for many curves 𝑋, there is another way. Building on earlier work of

Chabauty, Coleman proved:

Theorem 1.1.1 ([Col85, Theorem 4]). Suppose that 𝐾 = Q, that 𝑔 > 1, and that 𝑝

is a prime of good reduction for 𝑋 with 𝑝 > 2𝑔. Let 𝐽 be the Jacobian of 𝑋. Suppose

that rank 𝐽(Q) ≤ 𝑔 − 1. Then

#𝑋(Q) ≤ #𝑋(F𝑝) + (2𝑔 − 2) . (1.1.2)

The great strength of the Chabauty–Coleman method over Faltings’ proof is that

the bound (1.1.2) is sometimes sharp [GG93], in which case Theorem 1.1.1 can be

used to compute 𝑋(Q). Even when (1.1.2) is not sharp, the method computes (to

any desired 𝑝-adic precision) a finite subset of 𝑋(Q𝑝) which contains the set 𝑋(Q).

In combination with tools like the Mordell–Weil sieve, it is often possible to compute
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the set 𝑋(Q) exactly. For instance, Stoll has used this approach to compute 𝑋(Q)

for all 46,436 curves with Jacobian of rank 1 in a database of ‘small’ genus 2 curves

[Sto09].

For the sake of exposition, we now give a high-level overview of the Chabauty–

Coleman method. We give a more detailed exposition (in a more general context) in

Chapter 3.

Suppose that 𝑋(Q) ̸= ∅ so that the Abel–Jacobi map 𝑗 : 𝑋 →˓ 𝐽 is defined over

Q. From the commutative diagram

𝑋(Q) 𝑋(Q𝑝)

𝐽(Q) 𝐽(Q𝑝)

we see that inside 𝐽(Q𝑝),

𝑋(Q) ⊆ 𝑋(Q𝑝) ∩ 𝐽(Q) .

Considering 𝐽(Q𝑝) as a 𝑝-adic Lie group, the (𝑝-adic) closure 𝐽(Q) of 𝐽(Q) is a 𝑝-adic

Lie group of some dimension 𝜌 ≤ rank 𝐽(Q).

Now, 𝐽(Q𝑝) has dimension 𝑔 as a 𝑝-adic Lie group. For dimension-counting rea-

sons, it is reasonable to hope that if 𝜌 ≤ 𝑔 − 1 then the intersection

𝑋(Q𝑝) ∩ 𝐽(Q)

is finite. Indeed, this is what Chabauty proved. Later, Coleman developed a theory

of 𝑝-adic integration. Using this theory in Chabauty’s setup, Coleman showed how to

compute the set 𝑋(Q𝑝) ∩ 𝐽(Q) explicitly as the vanishing locus of a 𝑝-adic analytic

function on 𝑋(Q𝑝). Such a function is given locally by single-variable 𝑝-adic power

series, so methods from the theory of Newton polygons can be used to bound the size

of its set of zeroes.

The restriction𝐾 = Q in Theorem 1.1.1 is not serious. So long as rank 𝐽(𝐾) ≤ 𝑔−

1, Coleman’s result generalizes to bound #𝑋(𝐾) for any number field 𝐾. Replacing

the Jacobian with a generalized Jacobian, Theorem 1.1.1 can also be generalized to

bound the set of 𝑆-integral points on an 𝑆-integral model of a punctured curve. (See

12



Chapter 3.)

Unfortunately, the restriction rank 𝐽(Q) ≤ 𝑔 − 1 (or more precisely 𝜌 ≤ 𝑔 − 1) is

much more serious.

Several methods have been proposed to extend the method of Chabauty-Coleman

to handle the case where rank 𝐽(𝐾) ≥ 𝑔. In all cases, the idea is to replace the

Jacobian with something ‘larger.’

We give three examples:

1. Restriction of Scalars Chabauty: If 𝐾 is a number field of degree 𝑑 > 1, replace

𝑋 and 𝐽 with the Weil restrictions of scalars Res𝐾/Q𝑋 and Res𝐾/Q 𝐽 .

2. Descent + Chabauty: Using the theory of descent, given any isogeny from an

abelian variety to 𝐽 , it it possible to construct a finite set of covering curves

D := {𝑓𝑖 : 𝑋𝑖 → 𝑋}

such that 𝑋(𝐾) =
⋃︀

𝑖(𝑓𝑖(𝑋𝑖(𝐾))). Then apply Chabauty’s method to each

curve 𝑋𝑖.

3. Non-abelian Chabauty-Kim: Replace 𝐽 with a “Selmer variety” constructed from

a quotient of the pro-unipotent étale fundamental group of 𝑋.

In this thesis, we study the power of the first two approaches, especially in the

context of computing 𝑆-integral points on P1r{0, 1,∞}. Although it is not the focus

of our study, the Chabauty-Kim approach plays an important motivating role for this

project, as we discuss at the end of Section 1.4.

Write 𝑑 = [𝐾 : Q].

In the method of restriction of scalars Chabauty (or RoS Chabauty for short),

attributed by Siksek to a talk of Wetherell [Sik13, Wet00], one replaces the inclusion

𝑋(𝐾) ⊆ 𝑋(𝐾p) ∩ 𝐽(𝐾)
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inside 𝐽(𝐾p) with the inclusion

𝑋(𝐾) = (Res𝐾/Q 𝑋)(Q) ⊆ (Res𝐾/Q𝑋)(Q𝑝) ∩ (Res𝐾/Q 𝐽)(Q) (1.1.3)

inside the 𝑔𝑑-dimensional 𝑝-adic Lie group (Res𝐾/Q 𝐽)(Q𝑝). In order to prove that

𝑋(𝐾) is finite, we aim to show that the right-hand side is finite.

Unfortunately, the right-hand side of (1.1.3) can have positive-dimension as a

naïve 𝑝-adic analytic variety. In particular, it is infinite if this happens. So we wish

to understand when this intersection is finite.

As a first pass, we note that if this intersection is finite, it will typically have

expected dimension less than or equal to zero. More precisely, taking dimensions of

𝑝-adic analytic varieties, we must have

dim(Res𝐾/Q𝑋)(Q𝑝) + dim (Res𝐾/Q 𝐽)(Q) ≤ dim(Res𝐾/Q 𝐽)(Q𝑝) ,

or equivalently

dim (Res𝐾/Q 𝐽)(Q) ≤ 𝑑(𝑔 − 1) . (1.1.4)

Since

dim (Res𝐾/Q 𝐽)(Q) ≤ rank(Res𝐾/Q 𝐽)(Q) = rank 𝐽(𝐾) ,

we see that (1.1.4) holds whenever

rank 𝐽(𝐾) ≤ 𝑑(𝑔 − 1) . (1.1.5)

If (1.1.5) is true, we say that the RoS Chabauty inequality holds for 𝑋. Informally, the

RoS Chabauty inequality holds for 𝑋 exactly when we ‘expect for dimension reasons’

that RoS Chabauty will prove that 𝑋(𝐾) is finite.

As with Chabauty’s method, when the RoS Chabauty inequality holds for 𝑋, the

intersection (Res𝐾/Q 𝑋)(Q𝑝)∩(Res𝐾/Q 𝐽)(Q) can be computed as the vanishing set of

several 𝑑-variable 𝑝-adic analytic functions, locally expressible as 𝑝-adic power series
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in 𝑑 variables. Within each residue disc, the number of isolated C𝑝-valued points in

this vanishing locus is finite.

In contrast to what happens in the Chabauty-Coleman method, the set

(Res𝐾/Q𝑋)(Q𝑝) ∩ (Res𝐾/Q 𝐽)(Q)

may not be zero-dimensional even if the RoS Chabauty inequality holds for 𝑋. In

particular, this set may be infinite even when the RoS Chabauty inequality holds.

Indeed, if this set were always finite, we could attempt to prove all of Faltings’

Theorem as follows:

1. Given 𝑋/Q of genus 𝑔 with Jacobian 𝐽 , apply Chabauty’s theorem if possible.

2. Otherwise, produce a sequence of number fields 𝐾𝑖 of degree tending to infinity

with 𝐽(Q) = 𝐽(𝐾𝑖). (It is likely, although not proven that such 𝐾𝑖 can be

found.)

3. Then, for some 𝐾 := 𝐾𝑖, the base change 𝑋𝐾 satisfies the RoS Chabauty

inequality. Apply RoS Chabauty to show that 𝑋(𝐾) is finite.

4. Conclude that 𝑋(Q) ⊂ 𝑋(𝐾) is also finite.

Unfortunately, there is a problem with this argument. In this situation, the set

(Res𝐾/Q 𝑋𝐾)(Q𝑝) ∩ (Res𝐾/Q 𝐽)(Q) = 𝑋(𝐾 ⊗Q𝑝) ∩ 𝐽(𝐾) in 𝐽(𝐾 ⊗Q𝑝)

will contain a subset isomorphic to 𝑋(Q𝑝). Here, he failure of RoS Chabauty for 𝑋𝐾

is a sort of certificate of the failure of the Chabauty-Coleman method to compute the

set 𝑋(Q). This principle applies more broadly: If there is some 𝜅 ⊂ 𝐾 and a curve

𝑌/𝜅 such that both

1. 𝑌𝐾
∼= 𝑋 and

2. (Res𝜅/Q 𝑌 )(Q) ∩ (Res𝜅/Q 𝐽𝑌 )(Q) is infinite
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then (Res𝐾/Q𝑋)(Q) ∩ (Res𝐾/Q 𝐽𝑋)(Q) will be infinite as well. When this occurs we

say that 𝑋 has a base change obstruction to RoS Chabauty. See Section 4.2 for a

more detailed discussion.

Recently, [Dog19] pointed out another geometric situation which can force (Res𝐾/Q 𝑋)(Q)∩

(Res𝐾/Q 𝐽𝑋)(Q) to be infinite. If there is a curve 𝑌/𝐾 and a morphism 𝑓 : 𝑋 → 𝑌

such that

1. (Res𝐾/Q 𝐽𝑋/𝑓 *(𝐽𝑌 ))(Q) has finite index in (Res𝐾/Q 𝐽𝑋/𝑓
*(𝐽𝑌 ))(Q𝑝) and

2. (Res𝜅/Q 𝑌 )(Q) ∩ (Res𝜅/Q 𝐽𝑌 )(Q) is infinite

then (Res𝐾/Q𝑋)(Q) ∩ (Res𝐾/Q 𝐽𝑋)(Q) will be infinite as well. When this occurs we

say that 𝑋 has a full Prym obstruction to RoS Chabauty. See Section 4.3 for a more

detailed discussion.

It seems natural to hope that RoS Chabuaty can prove that 𝑋(𝐾) is finite when-

ever 𝑋 satisfies the RoS Chabauty inequality and has no base change obstructions or

full Prym obstructions. While there are no known counterexamples, the hope seems

extremely difficult to prove.

While general results may be out of range of current technology, RoS Chabauty is

useful in particular examples. Siksek [Sik13] gives a sufficient criterion to determine

if the intersection

(Res𝐾/Q 𝑋𝐾)(Q𝑝) ∩ (Res𝐾/Q 𝐽)(Q)

is finite and uses it to compute the set of Q( 3
√
2)-points on several genus 2 curves.

Let 𝑆 be a finite set of finite places of 𝐾 and let 𝑂𝐾,𝑆 be the ring of 𝑆-integers of

𝐾. In this work, we develop the method of RoS Chabauty to compute integral points

on curves, in particular to compute the set (P1
𝒪𝐾,𝑆

r {0, 1,∞})(𝒪𝐾,𝑆). This is the set

of solutions to the 𝑆-unit equation, i.e., the set

{(𝑥, 𝑦) ∈ 𝒪×
𝐾,𝑆 ×𝒪×

𝐾,𝑆 : 𝑥+ 𝑦 = 1} .

The 𝑆-unit equation is a classical and well-studied number theoretic object. Work

of Mahler [Mah33] using diophantine approximation in the style of Siegel and Thue
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gave the first proof that this set is finite. The theory of linear forms in logarithms can

be used to give explicit bounds on the size of the set. Let 𝑟1 and 𝑟2 be the number of

real embeddings and conjugate pairs of complex embeddings of 𝐾. Then, the current

state-of-the-art upper bound, due to Evertse [Eve84], is 3 · 72#𝑆+3𝑟1+4𝑟2 . This theory

has been developed to give efficient algorithms, implemented in Sage, to compute

solutions to 𝑆-unit equations [AKM+18, Sma99]. We give a more detailed review of

results on 𝑆-unit equations and their application in Section 1.4.

Although the 𝑆-unit equation has been well-studied, it remains an important test-

ing ground for new approaches to reprove Faltings’ Theorem. Both Kim’s nonabelian

Chabauty program [Kim05] and Lawrence and Venkatesh’s recent 𝑝-adic proof of

Faltings’ Theorem [LV18] first found success in proving finiteness of solutions to an

𝑆-unit equation. And in both cases, studying the example of P1 r {0, 1,∞} helped

to shine a light on the full theory.

We hope that our study of P1 r {0, 1,∞} will do the same for RoS Chabauty.

While RoS Chabauty alone is not enough to solve the 𝑆-unit equation, we are able

to use the method (and related ideas) to recover several finiteness results for unit-

equations with stronger bounds than are given by Evertse’s more general theorem.

For example, we prove

Theorem 6.3.1. Suppose that [𝐾 : Q] is not divisible by 3 and that 3 splits completely

in 𝐾. Then there is no pair 𝑥, 𝑦 ∈ 𝒪×
𝐾 such that 𝑥+ 𝑦 = 1. Equivalently,

(P1 r {0, 1,∞})(𝒪𝐾) = ∅.

While Theorem 6.3.1 holds independent of the degree of the field, our other results

require strong assumptions on the size of the field. In a series of examples (Corollar-

ies/Propositions 6.2.1, 6.2.3, 6.2.4, and 6.2.5) we show that if 𝐾 is a real quadratic

field, mixed cubic field, or totally complex quartic field, or a mixed quartic field with

a totally real subfield, then

#(P1 r {0, 1,∞})(𝒪𝐾) < ∞ . (1.1.6)
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This result provides the first infinite collection of examples of fields for which RoS

Chabauty has been proven to show finiteness of integral or rational points on a curve

but a straightforward application of classical Chabauty cannot prove finiteness.

Notably, for quadratic fields, the proof is sufficiently uniform in the field that it

allows us to recover the elementary fact that there are finitely many solutions to the

unit equation in the union of all quadratic fields [Nag64]. (In fact, there are exactly

8 such solutions!) Dan-Cohen and Wewers [DCW15] also recover a version of this

result when developing explicit algorithms for computing 𝑆-unit equations based on

Kim’s nonabelian Chabauty.

Having discussed RoS Chabauty, we now turn to our second ingredient, the

method of descent. Before stating our results, we need a definition

Definition 2.3.1. A descent set for (𝒞,𝒪𝐾,𝑆) is a finite set D of clearance hole curves

𝒟 over 𝒪𝐾,𝑆 (see Definition 2.1.1) equipped with morphisms 𝑓𝒟 : 𝒟 → 𝒞 such that

𝒞(𝒪𝐾,𝑆) ⊆
⋃︁
𝒟∈D

𝑓𝒟(𝒟(𝒪𝐾,𝑆)) .

If, moreover, the generic fibers 𝒟𝐾 of all of the curves 𝒟 are punctured genus 0 curves,

we say that D is a genus 0 descent set.

We make an analogous definition for sets of covering curves of a proper curve 𝑋

over 𝐾.

Methods for constructing descent sets are well-established. We discuss the method

of descent in detail in Section 2.3.

If 𝑋 has genus at least 2, the Riemann-Hurwitz formula implies that the curves

𝑋𝑖 in a descent set D for 𝑋 will have higher genus than 𝑋. Alternatively, if 𝒳 is a

punctured genus zero curve and D is a genus 0 descent set, the curves 𝒳𝑖 will have

more punctures than 𝒳 .

As in section 2.2, define the generalized Jacobian of a punctured curve 𝒳 to be

a certain 𝒪𝐾,𝑆-model for the generalized Jacobian of the projective closure of the

special fiber of 𝒳 with modulus equal to the divisor consisting of the sum of the

punctures, each with multiplicity 1.
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Then, in either case, the dimension of the (generalized) Jacobian of the 𝒳𝑖 will be

higher than the dimension of the (generalized) Jacobian of the 𝒳 . If the ranks of the

generalized Jacobians do not grow as quickly as the dimensions, one could attempt to

apply Chabauty’s method to the curves 𝒳𝑖 and use this to determine the set 𝒳 (𝒪𝐾,𝑆).

When 𝐾 = Q and 𝑆 is arbitrary, Poonen observed in a July 2005 email to Kim

that one can use this approach to prove that

(P1 r {0, 1,∞})(𝒪Q,𝑆)

is finite. The following result shows that with only descent by genus 0 covers and

the classical Chabauty-Chabauty method (as described in Chapter 3), one cannot do

much better.

Corollary 5.1.3. Suppose that we are not in the following situations: (i) 𝐾 = Q,

(ii) 𝐾 a real quadratic field and #𝑆 ≤ 1, (iii) 𝐾 an imaginary quadratic or totally

real cubic field and #𝑆 = 0.

Then the classical Chabauty inequality (3.2.6) is not satisfied by any descent set

consisting of genus zero covers of P1
𝒪𝐾,𝑆

r{0, 1,∞}. Under Leopoldt’s Conjecture, this

implies that the combination of classical Chabauty and descent by genus zero covers

is insufficient to prove that

(P1
𝒪𝐾,𝑆

r {0, 1,∞})(𝒪𝐾,𝑆)

is finite.

While the classical Chabauty inequality is never satisfied by descent sets consisting

of punctured genus zero covers of P1
𝒪𝐾,𝑆

r {0, 1,∞}, it is not difficult to construct

such descent sets where the RoS Chabauty inequality is satisfied. So, it is reasonable

to hope that the method of RoS Chabauty with descent could be used to prove that

(P1 r {0, 1,∞})(𝒪𝐾,𝑆) is finite.

It is difficult to prove in full generality when the (analogue of the) right-hand side

of (1.1.3) is finite (so that RoS Chabauty will suffice to prove finiteness of rational
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points). However, in all known cases where the right-hand side is infinite, the curve

𝒞, this infinitude can be attributed to a combination of base change obstructions (see

Section 4.2) and full Prym obstructions (see Section 4.3.)

In several circumstances, we prove that it is possible to avoid base change ob-

structions and Prym obstructions using descent.

To state our results, we need a definition. We say that a number field 𝜅 is CM if

𝜅 is totally complex and is a degree 2 extension of a totally real number field.

Theorem 5.2.2. The punctured curve P1
𝒪𝐾,𝑆

r{0, 1,∞} has a descent set D consisting

of genus 0 sound clearance hole curves 𝒟 = P1
𝒪𝐾,𝑆

r Γ𝒟 (see Definition 2.1.1) such

that

I. the RoS Chabauty inequality

rank𝒥𝒟(𝒪𝐾,𝑆) ≤ 𝑑(#Γ𝒟(𝐾)− 2). (5.2.2)

holds for all 𝒟 ∈ D .

II. Under the further assumption that 𝐾 does not contain a CM field, D can be

chosen so that there is no base change obstruction to RoS Chabauty for (𝒟,𝒪𝐾,𝑆) for

any 𝒟 ∈ D .

Theorem 5.2.4. Let 𝐾 be a number field which does not contain a CM subfield and

let 𝑞 be a prime. Fix an 𝛼 ∈ 𝐾 which is not a 𝑞th power in 𝐾 and let

𝒞 := P1
𝒪𝐾,𝑆

r {𝑥 ∈ 𝐾 : 𝑥𝑞 − 𝛼 = 0} .

For 𝑞 sufficiently large (depending only on 𝐾 and 𝑆), there is no full Prym obstruction

to RoS Chabauty for 𝒞. Moreover, if 𝒞 is the base change of some curve 𝒟, there is

no full Prym obstruction to RoS Chabauty for 𝒟.

Also, there is no base change obstruction to RoS Chabauty for 𝒞.

While Theorems 5.2.2 and 5.2.4 may not give much new information about so-

lutions to the 𝑆-unit equation, we emphasize that our primary goal in this thesis is

not to prove new bounds on the number of solutions the 𝑆-unit equation, but rather
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to understand the power of RoS Chabauty in combination with descent. We focus

on genus 0 covers of P1 r {0, 1,∞} because studying the ranks of their Jacobians

is possible. On the other hand, understanding ranks of Jacobians of higher genus

curves seems well beyond the range of current mathematical technology. Our work

also helps to clarify what can be said about the 𝑆-unit equation using purely 𝑝-adic

methods. It would be interesting to combine our ideas with stronger results from the

theory of linear forms in 𝑝-adic logarithms to understand this more completely.

1.2 Chabauty in dimension greater than 1: History

Although Chabauty’s method is traditionally discussed in context of rational points

on curves, the high-level idea of the method also applies to more general projective

varieties 𝑉 equipped with a morphism 𝑗 : 𝑉 → 𝐴 to an abelian variety 𝐴 such that

dim(𝑉 ) + rank𝐴(𝐾) ≤ dim(𝐴) and such that we understand the rational points of

the fibers of 𝑗. Of course, the restriction that we understand the rational points of

the fiber of 𝑗 rules out many classes of variety 𝑉 (for instance K3 surfaces, which

have only constant maps to abelian varieties).

Both restrictions of scalars of curves and symmetric powers of curves are examples

of varieties 𝑉 which are well-suited to Chabauty’s method. In this section, we briefly

summarize past results in these settings. Given a curve 𝑋/Q and a degree 𝑑 extension

𝐾 of Q, we also compare the application of Chabauty’s method to Sym𝑑 𝑋 and

Res𝐾/Q 𝑋.

1.2.1 RoS Chabauty and variants

In this thesis, we focus on the variant of Chabauty’s method applied to the restriction

of scalars of a curve.

In this situation, [Sik13] gives an explicit criterion to determine if several multivari-

able 𝑝-adic power series have a single zero in a residue disc. For several genus 2 curves

𝑋, he is able to use this criterion and RoS Chabauty to compute the set 𝑋(Q( 3
√
2)).

This allows him to determine the set of (𝑥, 𝑦, 𝑧) ∈ Z3 such that 𝑥2 + 𝑦3 = 𝑧10. Siksek
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attributes the idea to a talk of [Wet00], where the set of Q[𝑖]-points on a bielliptic

curve was computed. Unfortunately, the results of [Wet00] have never been published,

even as a preprint.

Given number fields 𝐾 ⊂ 𝐿 and curves 𝐵/𝐾 and 𝐶/𝐿 with a non-constant mor-

phism ℎ : 𝐶 → 𝐵𝐿, [FT15] uses related ideas (involving both restriction of scalars

and Chabauty-like techniques) to bound/compute the subset of 𝑃 ∈ 𝐶(𝐿) such that

ℎ(𝑃 ) ∈ 𝐵(𝐾).

1.2.2 Comparison with symmetric powers Chabauty

Several others [Sik09], [Par16], [Kla93], [GM17] have considered a similar variant of

Chabauty’s method that applies to symmetric powers of a curve.

Recall that RoS Chabauty starts with a variety 𝑋 over a degree 𝑑 number field

𝐾 and attempts to bound the set

(Res𝐾/Q𝑋)(Q𝑝) ∩ (Res𝐾/Q 𝐽)(Q)

inside of (Res𝐾/Q 𝐽)(Q𝑝), in order to compute 𝑋(𝐾). We ‘expect’ that RoS Chabauty

will prove that 𝑋(𝐾) is finite when rank 𝐽(𝐾) ≤ 𝑑(𝑔 − 1).

Similarly, symmetric powers Chabauty starts with a curve 𝑋 defined over Q (say

with a rational point 𝑃 ∈ 𝑋(Q).) The Abel-Jacobi map 𝑋 → 𝐽 extends to a

map 𝑗 : Sym𝑑 𝑋 → 𝐽 . Geometrically, the fibers of 𝑗 are projective spaces whose

dimensions are well-understood. In particular, we understand their rational points

well. Symmetric powers Chabauty attempts to bound the set

𝑗(Sym𝑑 𝑋)(Q𝑝) ∩ 𝐽(Q)

inside 𝐽(Q𝑝) in order to bound the number of fibers of 𝑗 which contain rational points.

One might hope to use this bound to bound #(Sym𝑑𝑋)(Q𝑝).

Unfortunately, (Sym𝑑 𝑋)(Q) is frequently infinite. For example, 𝑋 has a mor-

phism of degree ≤ 𝑑 to P1 or an elliptic curve 𝐸 of positive rank then (Sym𝑑𝑋)(Q)
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will be infinite.

if 𝑑 is greater than either the gonality of 𝑋, it will contain a copy of the pro-

jective line. If 𝑑 is greater than the degree of a map from 𝑋 to an elliptic curve of

positive rank. Nevertheless, if one excludes a special set 𝒮(Sym𝑑 𝑋), we ‘expect’ that

symmetric power Chabauty will prove that

(Sym𝑑 𝑋 r 𝒮(Sym𝑑 𝑋))(Q)

is finite when rank 𝐽(Q) ≤ 𝑔 − 𝑑 − 1. Following similar lines to our development

of RoS Chabauty, it should be possible to adapt Chabauty’s method for symmetric

powers to study integral points on symmetric powers of affine curves.

For𝑋/Q, symmetric powers Chabauty may seem strictly superior to RoS Chabauty

for computing 𝑋(𝐾) when both methods apply. After all, it gives information about

𝑋(𝐾) for all étale Q-algebras of degree 𝑑 simultaneously. Moreover, symmetric pow-

ers Chabauty may apply even if the RoS Chabauty inequality is not satisfied.

Despite these flaws, RoS Chabauty still provides additional value. First, RoS

Chabauty gives access to the 𝐾-points in the special set. For example, in the case

where [𝐾 : Q] = 2 and 𝑋 is a smooth proper hyperelliptic curve with affine patch

𝑦2 = 𝑓(𝑥), RoS Chabauty gives information about how many points with 𝑥-coordinate

in Q belong to 𝑋(𝐾). Symmetric power Chabauty has nothing to say about this,

since all such points are defined over some quadratic extension.

Second, RoS Chabauty may apply even when symmetric power Chabauty does

not.

Finally, RoS Chabauty includes symmetric power Chabauty as a special case in

the following sense. Fix a nice curve 𝑋/Q and let 𝐽 be the Jacobian of 𝑋.

For any number field 𝐾 of degree 𝑑, there is a norm map Nm : Res𝐾/Q 𝐽𝐾 → 𝐽 .

Let 𝑗 : Res𝐾/Q 𝑋𝐾 → Res𝐾/Q 𝐽𝐾 be the map induced by the Abel-Jacobi map.

Now, we claim that the composition Nm ∘𝑗 factors through Sym𝑑𝑋. Indeed, given

a Q-algebra 𝐴, any 𝑃 ∈ (Res𝐾/Q𝑋)(𝐴) maps to a 𝑑-tuple of ‘conjugate’ elements of

𝑋(𝐾⊗𝐴), or equivalently to an element of (Sym𝑑 𝑋)(𝐴). The Abel-Jacobi map from
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(Sym𝑑 𝑋)(𝐴) → 𝐽(𝐴) is just the sum of the images of the elements in the 𝑑-tuple.

The composition clearly agrees with Nm ∘𝑗. As a result, there is a commutative cube

(Res𝐾/Q𝑋)(Q) (Res𝐾/Q 𝑋)(Q𝑝)

(Sym𝑑 𝑋)(Q) (Sym𝑑 𝑋)(Q𝑝)

(Res𝐾/Q 𝐽)(Q) (Res𝐾/Q 𝐽)(Q𝑝)

𝐽(Q) 𝐽(Q𝑝)

Inside 𝐽(Q𝑝), we have

𝐽(Q) ∩ (Res𝐾/Q𝑋)(Q𝑝) ⊆ 𝐽(Q) ∩ (Sym𝑑 𝑋)(Q𝑝) .

In particular, this implies that the bound from RoS Chabauty on#𝑋(𝐾) will never be

worse than the bound which could be extracted naïvely from the result of symmetric

powers Chabauty.

This observation can be interpreted as saying that symmetric powers Chabauty is

a version of RoS Chabauty that holds uniformly for every base change of 𝑋 to étale

algebra 𝐾 with 𝑑 = [𝐾 : Q]. We will see a further example of this when we consider

(P1 r {0, 1,∞})(𝒪𝐾) for 𝐾 a (real) quadratic field in section 6.2.1.

Having introduced and compared RoS Chabauty and symmetric powers Chabauty,

we now survey results from both approaches.

The first result on symmetric powers Chabauty appears in [Kla93].

In [Sik09], Siksek proved a sufficient criterion for a residue disk to contain a single

rational point, computed (Sym2𝑋)(Q) in two explicit examples, and a hypothesis on

the gonality of 𝑋 required in [Kla93].

Park developed this work further in [Par14] and [Par16], proving a bound on

#(Sym𝑑 𝑋r𝒮(Sym𝑑𝑋))(Q) depending only on 𝑔, 𝑑, and a prime 𝑝 of good reduction,

under a difficult-to-verify technical assumption on 𝑋. Unfortunately, there is an error

in the proof of [Par16, Theorem 4.15 and Theorem 4.18] (and there are counter-
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examples to the statements.)

Most recently, Gunther and Morrow [GM17] further refined [Par16] and combined

this work with results from [BG13] on average ranks of hyperelliptic curves. For a

positive proportion of genus 𝑔 hyperelliptic curves over Q with a rational Weierstrass

point, they give an explicit bound for the number of quadratic points not obtained

by pulling back points of P1(Q). Unfortunately, their bounds appear to depend on

[Par16, Theorem 4.15 and Theorem 4.18].

1.3 Other improvements to Chabauty’s method

Many other authors have considered variants of Chabauty’s method in an attempt

to compute the 𝐾 or 𝒪𝐾,𝑆 points on curves. We give a brief survey of some such

results here. Although a comprehensive survey would run very long, we hope this

section will serve as a taste for what can be done with Chabauty’s method and will

encourage the reader to explore the area further.

Lorenzini and Tucker showed how to adapt Coleman’s method to a prime 𝑝 of

bad reduction (as in [LT02, Corollary 1.11]). Let 𝒳 to be a minimal proper regular

model for 𝑋 over Z𝑝, and let #𝒳 sm.
F𝑝

be the smooth locus of its special fiber. When

rank 𝐽(Q) < 𝑔, they show that

#𝑋(Q) ≤ #𝒳 sm.
F𝑝

(F𝑝) + (2𝑔 − 2) .

Notably, the bounds of [Col85] and [LT02] depend on 𝑝. A priori, the smallest

bound obtained as 𝑝 varies may be quite large if all of the small primes are primes of

bad reduction for 𝑋.

Some recent developments in Chabauty’s method involve uniform bounds on ra-

tional points on curves satisfying a more restrictive rank hypothesis than the rank

hypothesis appearing in classical Chabauty.

The first such uniform bound appears in [Sto19] and applies to hyperelliptic curves

𝑋 whose Jacobian 𝐽 satisfies with rank 𝐽(Q) ≤ 𝑔 − 3. Perhaps the most significant
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result in this direction is

Theorem 1.3.1 ([KRZB16]). Let 𝑋 be any smooth curve of genus 𝑔 and let 𝑟 =

rank 𝐽(Q). Suppose 𝑟 ≤ 𝑔 − 3. Then

#𝑋(Q) ≤ 84𝑔2 − 98𝑔 + 28 .

It is also known that in certain families, ‘most’ curves have very few rational

points. An argument involving equidistribution results on 2-Selmer groups from

[BG13] leads to

Theorem 1.3.2 ( [PS14, Theorem 10.6]). For 𝑔 > 1, the lower density of degree 2𝑔+1

hyperelliptic curves having just one rational point (namely, the point at infinity) is

at least 1 − (12𝑔 + 20)2−𝑔. In particular, as 𝑔 tends to infinity, the lower density of

degree 2𝑔 + 1 hyperelliptic curves having just one rational point tends to 1.

An analogous result for even degree hyperelliptic curves is proved in [BG13].

Other results have focused on making it easier to apply the Chabauty-Coleman

method in practice. For instance, one usually assumes that generators for (a finite

index subgroup of) 𝐽(Q) are known when applying the method. In practice, it can

be difficult to prove that a proposed generating set is complete. Stoll [Sto17] shows a

way to get around computing generators of the Mordell–Weil group by replacing the

Jacobian with a 𝑝–Selmer set.

Yet other results have attempted to relax the restriction that rank 𝐽(Q) ≤ 𝑔 − 1.

These methods, including elliptic curve Chabauty as developed in [FW99] and [Bru03],

usually apply descent in some way.

1.3.1 Kim’s nonabelian Chabauty

Kim has also proposed a vast generalization of Chabauty’s method, which replaces

𝐽(Q) and 𝐽(Q𝑝) with a tower of global and local Selmer varieties. These Selmer

varieties, constructed using the pro-unipotent étale fundamental group of 𝑋 carry
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the structure of algebraic varieties over Q𝑝. The first level of the tower (essentially)

specializes to Chabauty’s original method.

As with classical Chabauty, the Chabauty-Kim method proves𝑋(Q) is finite when

the dimension of the global Selmer variety (corresponding to dim 𝐽(Q)) is less than

the dimension of the local Selmer variety (corresponding to dim 𝐽(Q𝑝)). As one goes

up the tower, the dimensions of both varieties grow. When the dimension of the

local Selmer variety grows faster than the dimension of the global Selmer variety

(asymptotically), Kim’s method shows that 𝑋(𝐾) is finite. Kim’s method can also

be used to show that the set of 𝒪𝐾,𝑆 points on an affine curve is finite under similar

conditions.

Kim’s method has been applied to give new proofs of finiteness of integral points

for several classes of curves. [Kim05] uses this approach to show that P1(𝒪Q,𝑆) is

finite. [CK10] uses multivariable Iwasawa theory to prove that 𝑋(Q) is finite in the

case where 𝑋 is a curve of genus at least 2 whose Jacobian is isogenous to a product

of abelian varieties with complex multiplication. [EH17] builds on this work to show

that 𝑋(Q) is finite whenever 𝑋 is a geometrically Galois cover of P1 with solvable

Galois group.

A variant of Kim’s method using adelic points instead of 𝑝-adic points was proved

in [Ove16] to cut out exactly the set of points which survive torsors for finite étale

nilpotent group schemes of odd order.

Very recently, Dogra proved an unlikely intersection result for iterated integrals

and used it to extend the results of finiteness results of [Kim05], [CK10], and [EH17]

to give nonabelian Chabauty proofs of the finiteness of 𝒳(𝒪𝐾,𝑆) for curves 𝒳 of the

same forms, but over any number field 𝐾 and for any finite set of places 𝑆. (See

[Dog19] for details.)

Restricting the method to the second step of the tower (this is called quadratic

Chabauty), the Chabauty-Kim method can be applied to bound the set 𝑋(Q) in

several cases even when rank 𝐽(Q) = dim 𝐽 . For instance, as a relatively easy to state

example of a much more general result, there is

Theorem 1.3.3 ([BD18a, special case of Corollary 1.2]). Let 𝑋 be a smooth projective
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hyperelliptic curve of genus 𝑔 with good reduction at 3 and potential good reduction at

all primes. Let 𝐽 be the Jacobian of 𝑋, let 𝑟 = rank 𝐽(Q), and let 𝜌 be the rank of

the Néron–Severi group of 𝐽 . Suppose that 𝑟 = 𝑔 and 𝜌 > 1. Then

#𝑋(Q) < 24𝑔3 + 228𝑔2 + 120𝑔 + 72 .

In addition to general bounds, it is often possible to use quadratic Chabauty in

practice to compute an explicit subset of 𝑋(Q𝑝) which contains 𝑋(Q). For instance,

the method was used to complete the classification of Q-points on the modular curves

𝑋s(ℓ) := 𝑋(ℓ)/𝐶s(ℓ)
+, where 𝐶s(ℓ)

+ is the normalizer of a split Cartan subgroup of

GL2(Fℓ). [BDS+17] showed

Theorem 1.3.4 ([BDS+17]). #𝑋s(13)(Q) = 7 .

The curve 𝑋s(13)(Q) has genus 3 and absolutely simple Jacobian of rank 3; this

made it inaccessible to all methods used to tackle other levels.

1.3.2 The Mordell–Weil sieve

No summary of improvements to Chabauty’s method would be complete without

mentioning the Mordell-Weil sieve. Although, strictly speaking, it is not a part of

Chabauty’s method, the Mordell–Weil sieve allows one to combine information from

reducing modulo many different primes to show that 𝑋(Q) must map into certain

cosets of subgroups of 𝐽(Q). This often allows one to rule out the existence of rational

points inside of some residue discs on 𝑋Q𝑝 . Using the Mordell–Weil sieve makes it

much more likely that the subset of 𝑋(Q𝑝) computed via Chabauty will be equal to

the set 𝑋(Q). We recommend [Sik15] as a reference.
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1.4 History of the 𝑆–unit equation

From one perspective, much of this thesis is devoted to studying a classical object of

over a century of research — the set of solutions to the 𝑆-unit equation, i.e., the set

𝑈𝐾,𝑆 := {(𝑥, 𝑦) ∈ 𝒪×
𝐾,𝑆 ×𝒪×

𝐾,𝑆 : 𝑥+ 𝑦 = 1} ∼= (P1 r {0, 1,∞})(𝒪𝐾,𝑆) .

Building on earlier work of Siegel and Mahler on 𝑆–integral points on curves of

positive genus, [Lan60] shows that 𝑈𝐾,𝑆 is finite. These proofs were ineffective. In

other words, they gave no information about the following questions:

1. Can (P1r {0, 1,∞})(𝒪𝐾,𝑆) be bounded uniformly in terms of [𝐾 : Q] and #𝑆?

2. Given 𝐾 and 𝑆, is it possible to compute the set 𝑈𝐾,𝑆 ? If so, can one compute

𝑈𝐾,𝑆 efficiently?

Regarding the first question: For many years, the best known (general) upper

bounds on #𝑈𝐾,𝑆 have built on work of Baker [Bak67] and Yu [Yu89] on the theory

of linear forms in logarithms and linear forms in 𝑝-adic logarithms. For instance, in

[Eve84], it is proved that

#𝑈𝐾,𝑆 ≤ 3 · 7𝑑+2·#𝑆+2·#𝑀∞
𝐾 = 3 · 72#𝑆+3𝑟1+4𝑟2 .

This upper bound is far from the largest known lower bounds. [EST88] show that

there exists a positive constant 𝐶 and sets 𝑆 with #𝑆 arbitrarily large satisfying

𝑈Q,𝑆 > exp(𝐶(𝑠/ log 𝑠)1/2). In the context where the field 𝐾 varies instead of 𝑆,

[Gra96] shows that 𝑈𝐾,∅ ≥ 𝐶 · [𝐾 : Q]2 for cyclotomic fields.

Regarding the second question: Many authors have produced effective bounds for

the heights of elements of 𝑈𝐾,𝑆 by combining data from linear forms in logarithms at

both the infinite and the finite places of 𝐾. The current state of the art can be found

in [Győ19]. It is also possible to prove effective bounds on the height of elements

of 𝑈𝐾,𝑆 without using the theory of linear forms in logarithms [MP13]. In principle,

these bounds allow one to compute 𝑈𝐾,𝑆 by exhaustively checking all elements of
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𝒪×
𝐾,𝑆 up to a given height. In practice, it is possible to do much better by using

a combination of sieving methods and LLL-based techniques for lattice reduction

[Sma99]. An efficient implementation is now available in Sage [AKM+18].

At this point, bounds on#𝑈𝐾,𝑆 and methods for computing 𝑈𝐾,𝑆 are well-understood.

What is the value in continuing to study this set? We propose two answers.

First, algorithms for computing 𝑈𝐾,𝑆 involve a mixture of techniques. It seems

likely that new ideas for studying 𝑈𝐾,𝑆 could lead to more efficient computations. For

instance, it may be possible to use our ideas to improve the efficiency of the sieving

step of [AKM+18].

Being able to compute 𝑈𝐾,𝑆 efficiently has several applications. For instance, it

is a key step in computing all elliptic curves over 𝐾 with good reduction outside 𝑆

[Š63] (as explained in [Sil09, proof of theorem 6.1],) all genus 2 curves over 𝐾 with

good reduction outside 2 [MS93], or all Fermat curves with good reduction outside 2

and 3 [BKSW19]. There are also applications to the study of recurrence sequences,

decomposable form equations, and much more.

Second, the unit equation has recently been an important testing ground for strate-

gies for new proofs of Faltings’ Theorem. The first triumph of Kim’s nonabelian

Chabauty program was a new proof that 𝑈Q,𝑆 is finite [Kim05]. This work has since

been turned into an explicit algorithm for bounding 𝑈Q,𝑆 inside of the vanishing set

of 𝑝-adic power series, at least when 𝑆 is small (and also for number fields of small

degree) [DCW15]. Further development of Kim’s approach has led to new bounds on

𝑋(Q) for 𝑋 a hyperelliptic curve with rank 𝐽(Q) = 𝑔 and Néron–Severi rank greater

than 1 [BD18b, BD17], as well as the explicit computation of the Q-points on ‘cursed’

modular curve 𝑋𝑛𝑠(13) with rank and genus equal to 3 [BDS+17].

Before they completed their new 𝑝-adic proof of Faltings’ theorem, Lawrence and

Venkatesh also reproved the finiteness of 𝑈𝐾,𝑆 by their method [LV18]. It served

an important motivational role, and continues to be useful as a source of intuition

regarding their method.

Our (wildly optimistic) dream is that the methods we develop in this thesis, pos-

sibly adapted to the setting of Kim’s nonabelian Chabauty, could someday be part
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of a new, computationally-oriented proof of Faltings’ theorem. This day seems far off

and may well never arrive. Nevertheless, we hope this dream will serve as sufficient

motivation for our study of the 𝑆-unit equation.

1.5 Outline of this thesis

The remainder of this thesis is organized as follows:

Chapter 2 sets the notation that we use throughout the paper and discusses some

background material. It may be best viewed as a reference section to be consulted

as needed. It focuses on three topics: generalized Jacobians, descent, and Newton

polygons. Section 2.2 sets up the theory necessary to describe an embedding of the

punctured curve 𝒞 into a semi-abelian scheme over 𝒪𝐾,𝑆. Section 2.3 reviews the

theory of descent and gives explicit examples of descent sets for punctured genus 0

curves.

Chapter 3 reviews the classical theory of Chabauty’s method. While most expo-

sitions of Chabauty’s method consider Q-points on projective curves, we work in the

full generality of 𝒪𝐾,𝑆-points on integral models of curves. Although this complicates

the presentation somewhat, we hope that it will prepare the reader to understand the

method of Chabauty for restrictions of scalars of curves.

In Chapter 4, we present explain the RoS Chabauty method. Our treatment differs

from Siksek’s [Sik13] in two main ways. Firse, we develop the theory for the more

general setting of integral points on curves. Second, while Siksek always considers

the Z𝑝 points of Res𝐾/Q𝑋 and Res𝐾/Q 𝐽 , we often consider the 𝐾p-points of these

varieties. This allows us to simplify formulas for regular differentials substantially,

at the cost of working over larger fields. In this chapter, we also explain how base

change obstructions to RoS Chabauty arise.

In Chapter 5, we study the power of classical and RoS Chabauty together with

descent for bounding (P1 r {0, 1,∞})(𝒪𝐾,𝑆). We show that classical Chabauty and

descent by genus 0 covers suffices to prove finiteness of the 𝑆-unit equation only in

very special cases. In contrast, when 𝐾 has does not contain a CM subfield, we show
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that all known obstacles to RoS Chabauty for P1 r {0, 1,∞} can be avoided using

descent. This should be viewed as evidence that RoS Chabauty and descent may

suffice to prove finiteness of the 𝑆-unit equation.

In Chapter 6, we give several extended examples where we use RoS Chabauty to

give a new proof that (P1 r {0, 1,∞})(𝒪𝐾) is finite. We cover the cases where 𝐾 is

a quadratic field, a mixed cubic field, a totally complex quartic field, a mixed quartic

field with a real quadratic subfield. We also show that there are no solutions to the

unit equation when [𝐾 : Q] is not divisible 3 and 3 splits completely in 𝐾. The last

two cases involve some particularly interesting applications of the method.
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Chapter 2

Preliminaries

This chapter provides notation and a variety of background material which will be

used later in this thesis. The reader may find it most helpful to skip this section on

a first reading and to consult it as necessary.

2.1 Notation and conventions

In this section, we collect notations. There will be several forward references justifying

our notation.

Throughout this thesis, we assume that 𝑋 is a nice curve of genus 𝑔 over a number

field 𝐾, i.e., 𝑋 is smooth, proper, and geometrically integral. Given an effective

divisor m on 𝑋 which is defined over 𝐾, we let 𝐶 be the open subscheme of 𝑋 given

by 𝐶 = 𝑋 r supp(m). We assume m has multiplicity at most 1 at any point of 𝑋.

We also assume that

degm ≥

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
3, if 𝑔 = 0,

1, if 𝑔 = 1,

0, if 𝑔 ≥ 2 ,

so that 𝐶 is a hyperbolic curve.

Let 𝐽𝐶 := GJac(𝐶,m) be the generalized Jacobian of 𝑋 with modulus m. (See

Section 2.2.) The group scheme 𝐽𝐶 is a semi-abelian variety over 𝐾. This means that

33



𝐽𝐶 is the extension of an abelian variety 𝐴 by a torus 𝑇 . In other words, 𝐽𝐶 is the

middle term in an exact sequence

0 → 𝑇 → 𝐽𝐶 → 𝐴 → 0 .

In this sequence, the abelian variety 𝐴 is the Jacobian of 𝑋 and the torus 𝑇 depends

on the modulus m. Set 𝛾 = max(0, degm − 1). Then, dim𝑇 = 𝛾 and dim𝐴 = 𝑔, so

dim 𝐽𝐶 = 𝑔 + 𝛾.

We write 𝑟1 = 𝑟1(𝐾) for the number of real embeddings of 𝐾 and 𝑟2 = 𝑟2(𝐾)

pairs of complex conjugate embeddings of 𝐾. We write 𝑑 = [𝐾 : Q] = 𝑟1 + 2𝑟2 for

the degree of 𝐾 over Q.

We say that a number field 𝐾 is CM if 𝐾 is a totally complex, degree 2 extension

of a totally real field.

Let 𝑆 ′ be a finite set of finite places of Q, and let 𝑆 be the set of places of 𝐾 lying

over 𝑆 ′. We write 𝒪𝐾,𝑆 for the ring of 𝑆-integers of 𝐾 and write Z𝑆′ := 𝒪Q,𝑆′ . Note

that 𝒪𝐾,𝑆 is the integral closure of Z𝑆′ in 𝐾 and is free of rank 𝑑 as a Z𝑆′-module, so

that there is a restriction of scalars functor which takes 𝒪𝐾,𝑆-schemes to Z𝑆′-schemes.

In our convention, 𝑆 does not contain the infinite places. We warn the reader that

many authors use different conventions. We use this notation because the infinite and

finite places will behave differently in many of our arguments.

Chabauty’s method is a 𝑝-adic method. As such we will need to work with com-

pletions of 𝐾. Let p /∈ 𝑆 be a prime of 𝐾. We write 𝐾p for the completion of 𝐾 at p

and 𝒪p for the ring of integers of 𝐾p.

Given a scheme 𝒵 over a base 𝑇 and scheme 𝑇 ′/𝑇 , we let 𝒵𝑇 ′ denote the base

change of 𝒵 to 𝑇 ′. When 𝑇 ′ = Spec𝐿 for a ring 𝐿, we abuse notation and write

𝒵𝐿 := 𝒵Spec𝐿.

In this thesis, we will be interested in the set of integral points on certain 𝒪𝐾,𝑆-

models of 𝐶. We now define the models which are acceptable for our method.

Definition 2.1.1. Suppose that 𝑋 is a smooth, proper, geometrically integral curve

over 𝐾 and let 𝒳 be a proper regular model for 𝑋 over 𝒪𝐾,𝑆. Then the closure
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of supp(m) in 𝒳 is a horizontal divisor Γ of 𝒳. Write 𝒞 = 𝒳 r Γ. Then, 𝒞 is an

𝒪𝐾,𝑆-model for 𝐶.

We call a 𝒪𝐾,𝑆-model 𝒞 of this form a clearance hole model for 𝐶.

If, moreover, 𝒞 is smooth, separated, and of finite-type over 𝒪𝐾,𝑆 and the fibers

of 𝒞 over the closed points of 𝒪𝐾,𝑆 are smooth and geometrically connected, we say

that 𝒞 is a sound clearance hole model for 𝐶.

Also, we say a scheme 𝒞 over 𝒪𝐾,𝑆 is a (sound) clearance hole curve if 𝒞 is a

(sound) clearance hole model for its generic fiber 𝒞𝐾 .

Remark 2.1.2. A clearance hole is a hole through an object which is large enough to

enable the threads of a screw or bolt to pass through but not the head of the screw

or bolt. In other words, it is a hole which passes all the way through an object and

is exactly as large as it needs to be, but no larger. The word sound is intended in the

sense of ‘structurally sound’.

Remark 2.1.3. Given a clearance hole model 𝒞 for 𝐶, it is always possible to enlarge

𝑆 to get a sound clearance hole model.

Since we assume that 𝐶 is a hyperbolic curve, given any clearance hole model 𝒞

for 𝐶, the set 𝒞(𝒪𝐾,𝑆) is finite by Faltings’ theorem and Siegel’s theorem.

Given a sound clearance hold model 𝒞 for 𝐶 over 𝒪𝐾,𝑆, let 𝒥𝒞 be the connected

component of the identity of the lft-Néron model of 𝐽𝐶 over 𝒪𝐾,𝑆. We call 𝒥𝒞 the

generalized Jacobian of 𝒞. Note however, that 𝒥𝒞 depends only on 𝐶 and 𝒪𝐾,𝑆.

Since 𝒞 is smooth and has geometrically connected fibers, given 𝑃 ∈ 𝒞(𝒪𝐾,𝑆),

the Abel-Jacobi map 𝑗 : 𝐶 → 𝐽𝐶 based at 𝑃 extends to a map 𝑗 : 𝒞 → 𝒥𝒞. (See

Section 2.2 for more on this construction.)

Remark 2.1.4. When 𝒞 = P1
𝒪𝐾,𝑆

r Γ, such a morphism can be realized explicitly

without enlarging 𝑆, even in the absence of an 𝑆-integral point. For instance, if

𝒞 = P1
𝒪𝐾,𝑆

r {0, 1,∞}, we can take the morphism defined by

P1
𝒪𝐾,𝑆

r {0, 1,∞} → G𝑚,𝒪𝐾,𝑆
×G𝑚,𝒪𝐾,𝑆

𝑥 ↦→ (𝑥, 𝑥− 1).
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See Section 2.2.5 for the general construction.

Finally, given a scheme 𝒵 over 𝒪𝐾,𝑆, we always use dim𝒵 to refer to the relative

dimension of 𝒵 over 𝒪𝐾,𝑆. In all situations we consider, this will be equivalent to the

dimension of the generic fiber 𝒵𝐾 as a 𝐾-scheme.

2.2 Generalized Jacobians

In this section we discuss the basic properties of generalized Jacobians needed for the

rest of this thesis.

2.2.1 Generalized Jacobians over Algebraically Closed Fields

In this section, our exposition mostly follows that of [Ser88].

To start, let 𝑋 be a nice (smooth, projective, and geometrically integral) curve

defined over an algebraically closed field 𝐾. Let 𝐽 be the Jacobian of 𝑋.

The abelian variety 𝐽 plays two main roles with respect to 𝑋.

1. The Jacobian 𝐽 is the Picard variety of𝑋; i.e., it parameterizes degree 0 divisors

on 𝑋 up to linear equivalence.

2. The Jacobian 𝐽 is the Albanese variety of 𝑋; i.e., given a point 𝑃 ∈ 𝑋(𝐾),

the Abel-Jacobi morphism 𝑗 : 𝑋 → 𝐽 taking 𝑃 to the identity on 𝐽 satisfies

the following universal property: For any abelian variety 𝐴 and any morphism

𝑓 : 𝑋 → 𝐴 which takes 𝑃 to the identity on 𝐴, there is a unique morphism of

group schemes 𝜑 : 𝐽 → 𝐴 such that 𝑓 = 𝜑 ∘ 𝑗.

Generalized Jacobians have analogues of these properties. They have a similar

relationship with the Jacobian as a ray class group has with the class group of a

number field.

As when defining ray class groups, we need a notion of modulus.

A modulus m on 𝑋 is a formal nonnegative integer linear combination of points of

𝑋(𝐾), i.e., an effective divisor on 𝑋. Any modulus can be expressed a integer linear
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combination

m =
∑︁

𝑃∈𝑋(𝐾)

𝑛𝑃𝑃

where 𝑛𝑃 = 0 for all but finitely many 𝑃 ∈ 𝑋(𝐾) and 𝑛𝑃 ≥ 0 always. The support

of m is the finite set

supp(m) := {𝑃 ∈ 𝑋(𝐾) : 𝑛𝑃 ̸= 0} .

If 𝜙 ∈ 𝐾(𝑋) is a rational function, we write 𝜙 ≡ 1 (mod m) if 𝜙 − 1 has a zero

of order at least 𝑛𝑃 for each 𝑃 ∈ supp(m).

The generalized Jacobian 𝐽m of 𝑋 with modulus m exists and is characterized by

the universal property in Theorem 2.2.3.

Before we state the theorem, we define a property of functions on 𝑋 equipped

with a modulus m.

Definition 2.2.1. Let 𝑓 : 𝑋 99K 𝐺 be a rational map from𝑋 to a commutative group

scheme over 𝐾. Given a divisor 𝐷 =
∑︀

𝑛𝑃𝑃 on 𝑋, let 𝑓(𝐷) denote the element of

𝐺 given by
∑︀

𝑛𝑃𝑓(𝑃 ) (writing the group operation additively.) If both

1. 𝑓 is regular away from supp(m), and

2. 𝑓(𝐷) = 0 whenever 𝐷 = (𝜙) is the divisor of a function with 𝜙 ≡ 1 mod m ,

say that 𝑓 is m-good.

Definition 2.2.2. A rational map 𝜙 : 𝐻 → 𝐺 of commutative algebraic groups is an

affine homomorphism if 𝜙 is a composition of a homomorphism and a translation.

Theorem 2.2.3 ( [Ser88, Theorem I.2]). For every modulus m, there exists a com-

mutative algebraic group 𝐽m and a rational map 𝑗m : 𝑋 99K 𝐽m such that the following

property holds:

For every commutative algebraic group 𝐺 and every m-good rational map 𝑓 : 𝑋 99K

𝐺, there is a unique affine homomorphism 𝜃 : 𝐽m 99K 𝐺 such that 𝑓 = 𝜃 ∘ 𝑗m.

As with the usual Abel–Jacobi morphism, 𝑗m is unique up to the choice of a base

point 𝑃 ∈ 𝑋(𝐾) mapping to the identity element of 𝐽(𝐾).
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We will abuse notation slightly by referring to 𝑗m as the Abel–Jacobi morphism,

in keeping with standard terminology for Jacobians. Much like the usual Abel–Jacobi

morphism, the restriction of 𝑗m to 𝑋 r supp(m) is a locally closed embedding.

The structure of 𝐽m is well understood. For each 𝑃 , let 𝑅𝑃 := 𝐾[𝑡]/(𝑡𝑛𝑃 ). Then,

𝐽m fits into the following exact sequence:

0 →

⎛⎝ ∏︁
𝑃∈supp(m)

Res𝑅𝑃 /𝐾 G𝑚

⎞⎠ /G𝑚 → 𝐽m → 𝐽 → 0 . (2.2.4)

We are most concerned with the case where 𝑛𝑃 = 1 for all 𝑃 ∈ supp(m), i.e. the

case where m (viewed as a subscheme of 𝑋 in the natural way) is étale over Spec(𝐾).

In this situation, 𝐺𝑃 = G𝑚 for all 𝑃 ∈ supp(m), and so 𝐽m is an extension of an

abelian variety by a torus, i.e. a semiabelian variety.

Recall that 𝛾 = max(0, deg(m)− 1). By 2.2.4, the toric part of 𝐽m has dimension

𝛾 and the abelian variety quotient has dimension 𝑔 = genus(𝑋).

To ease notation throughout the rest of the paper, we make the following defini-

tion:

Definition 2.2.5. Suppose that 𝑋/𝐾 is a smooth, proper, and geometrically integral

curve.

Let m be a modulus with 𝑛𝑃 = 1 for all 𝑃 ∈ supp(m). Set 𝐶 := 𝑋 rm.

The generalized Jacobian of 𝐶, which we denote by 𝐽m or 𝐽𝐶 or GJac(𝐶), is the

generalized Jacobian of 𝑋 with modulus m.

Similarly, we denote the Jacobian of 𝑋 by Jac(𝑋).

2.2.2 Generalized Jacobians over (Number) Fields

Let 𝑋 be a nice curve over a number field 𝐾 and let m be a reduced effective divisor

on 𝑋. Then, 𝐶 := 𝑋 r supp(m) is a smooth, geometrically integral curve over 𝐾.

Fix an algebraic closure 𝐾 of 𝐾.

Much like the usual Jacobian, generalized Jacobians descend. This means that is
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there is a commutative group scheme GJac(𝐶) defined over 𝐾 such that

GJac(𝐶)𝐾 = GJac(𝐶𝐾) .

If moreover 𝐶(𝐾) ̸= ∅, fixing any 𝑃 ∈ 𝐶(𝐾) determines an Abel-Jacobi morphism

𝑗 : 𝐶𝐾 → GJac(𝐶)𝐾 which descends to a locally closed embedding

𝑗 : 𝐶 → GJac(𝐶) ,

defined over 𝐾 and such that 𝑗(𝑃 ) is the identity element of GJac(𝐶).

We comment briefly on the structure of GJac(𝐶). Recall that m is identified with

the reduced zero-dimensional subscheme 𝑋 r 𝐶. Then, m = Spec(𝐿) for some étale

algebra 𝐿/𝐾. Then, refining (2.2.4), GJac(𝐶) fits into the exact sequence

0 → (Res𝐿/𝐾 G𝑚)/G𝑚 → GJac(𝐶) → Jac(𝑋) → 0 .

We discuss the structure of Res𝐿/𝐾 G𝑚 in further detail in Section 2.2.5.

2.2.3 Néron Models

Before we define the generalized Jacobian for relative curves, we first recall some facts

about Néron models of semiabelian varieties. Our exposition is mostly drawn from

[BLR90].

We first recall the definition of a Néron model:

Definition 2.2.6. [BLR90, Definition 1.2.1.] Let 𝑆 be a Dedekind scheme with ring

of rational functions 𝐾.

Let 𝑋𝐾 be a smooth 𝐾-scheme. A Néron model of 𝑋𝐾 (resp. a Néron lft-model)

is an 𝑆-model of 𝑋 which is smooth, separated, and of finite type (resp. locally of

finite type,) and which satisfies the following universal property, called the Néron

mapping property:

For each smooth 𝑆-scheme 𝑌 and each 𝐾-morphism 𝑢𝐾 : 𝑌𝐾 → 𝑋𝐾 there is a
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unique 𝑆-morphism 𝑢 : 𝑌 → 𝑋 extending 𝑢𝐾 .

By the Néron mapping property, a Néron lft-model 𝐺 of an algebraic group 𝐺𝐾

over 𝐾 is a group scheme over 𝑆 (if it exists). Note, however, that 𝐺 need not be

proper over 𝑆, even if 𝐺𝐾 is proper over 𝐾. We require the following existence result:

Theorem 2.2.7 ([BLR90, page 310]). Let 𝑆 be an excellent Dedekind scheme with

ring of rational functions 𝐾 of characteristic 0. Let 𝐺𝐾 be a smooth, commutative,

connected algebraic group over 𝐾. The following conditions are equivalent:

1. 𝐺𝐾 admits a Néron lft-model over 𝑆.

2. 𝐺𝐾 contains no subgroup of type G𝑎.

In particular, if 𝐺𝐾 is a semi-abelian variety, then 𝐺𝐾 admits a Néron lft-model

over 𝑆. The Néron lft-model is of finite type if and only if 𝐺𝐾 is an abelian variety.

Remark 2.2.8. The fibers of a Néron lft-model 𝐺 of a smooth, commutative, connected

algebraic group need not be connected. We let 𝐺∘ denote the (fiber-wise) connected

component of the identity section. The subscheme 𝐺∘ is also a commutative group

scheme.

Example 2.2.9. Suppose that 𝐸/Q𝑝 is an elliptic curve. Let ℰ/Z𝑝 be the minimal

proper regular model of 𝐸. Then the Néron model of 𝐸 is the open subscheme of ℰ

obtained by removing any singular points on the special fiber of ℰ .

Example 2.2.10. We describe the lft-Néron model 𝐺 over SpecZ of G𝑚,Q.

We construct 𝐺 by gluing an infinite disjoint union of copies of G𝑚,Z, indexed by

a prime and an integer. Write 𝑝𝑛G𝑚,Z for the copy indexed by 𝑝 and 𝑛. This is just

notation, but it will be suggestive of the gluing. We have:

G𝑚,Z ∪
⋃︁

𝑝 prime

⋃︁
𝑛∈Z

𝑝𝑛G𝑚,Z .

To get 𝐺, we glue G𝑚,Z to 𝑝𝑛G𝑚,Z over SpecZ r {𝑝} via multiplication by 𝑝𝑛.

The generic fiber of the resulting scheme is clearly G𝑚,Q. The special fiber over

𝑝 is an disjoint union of copies of G𝑚,F𝑝 indexed by Z. Writing 𝑝𝑛G𝑚,F𝑝 for the copy
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indexed by 𝑛 and writing 𝑚 for the multiplication on G𝑚,F𝑝 , the group law on the

special fiber is given by

𝑀 :
⋃︁
𝑛∈Z

𝑝𝑛G𝑚,F𝑝 ×
⋃︁
𝑛∈Z

𝑝𝑛G𝑚,F𝑝 →
⋃︁
𝑛∈Z

𝑝𝑛G𝑚,F𝑝 ,

=
∐︁

(𝑖,𝑗)∈Z2

𝑚 : 𝑝𝑖G𝑚,F𝑝 × 𝑝𝑗G𝑚,F𝑝 → 𝑝𝑖+𝑗G𝑚,F𝑝 .

The inversion maps and co-units are defined similarly.

The Z-points of 𝐺 are clearly in bijection with G𝑚,Q(Q) = Q×. Indeed, an element

of 𝐺(Z) is an element of 𝑥 ∈ Q× together with the 𝑝-adic valuation of 𝑥 and the

congruence class modulo 𝑝 of 𝑝−𝑣𝑝(𝑥)𝑥 for each prime 𝑝.

Moreover, the connected component of the identity is

𝐺∘ = G𝑚,Z .

One can check that the Néron property holds and that this construction generalizes

to number fields without much further work. See [BLR90, Example 10.1.5] for details.

Taking Néron models ‘commutes’ with Weil restriction of scalars as follows.

Proposition 2.2.11. let 𝑇 ′ → 𝑇 be a finite flat extension of Dedekind schemes with

rings of rational functions 𝐿 and 𝐾, respectively. Suppose that 𝐺𝐿 is a smooth group

scheme over 𝐿 with Neron lft-model 𝐺 over 𝑇 ′.

The Weil restriction of scalars Res𝑇 ′/𝑇 𝐺 is an lft-Néron model for Res𝐿/𝐾 𝐺𝐿.

Proof. The Weil restriction of scalars Res𝑇 ′/𝑇 𝐺 is a smooth, separated, locally of

finite type model for Res𝐿/𝐾 𝐺𝐿, so it suffices to check the Néron mapping prop-

erty. Moreover, the universal property of restriction of scalars (twice) and the Néron
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property for 𝐺 imply that for any 𝑇 -scheme 𝑇 ′′,

Hom𝑇 (𝑇
′′,Res𝑇 ′/𝑇 𝐺) = Hom𝑇 ′(𝑇 ′′ ×𝑇 𝑇 ′, 𝐺)

= HomSpec(𝐿)((𝑇
′′ ×𝑇 𝑇 ′)𝐿, 𝐺𝐿)

= HomSpec(𝐿)(𝑇
′′
𝐾 ×Spec𝐾 Spec(𝐿), 𝐺𝐿)

= HomSpec(𝐾)(𝑇
′′
𝐾 ,Res𝐿/𝐾 𝐺𝐿) .

Hence, Res𝑇 ′/𝑇 𝐺 is a Néron model for Res𝐿/𝐾 𝐺𝐿.

Remark 2.2.12. We claim that (Res𝑇 ′/𝑇 𝐺)∘ = (Res𝑇 ′/𝑇 𝐺∘). Indeed, since the uni-

versal property implies that the fibers of the restriction of scalars are the restriction

of scalars of the fibers, so it suffices to check this fiber-wise. Now, the fibers of 𝐺

are smooth, so [CGP15, Proposition A.5.9] shows that the fibers of (Res𝑇 ′/𝑇 𝐺∘) are

connected. So

(Res𝑇 ′/𝑇 𝐺)∘ = (Res𝑇 ′/𝑇 𝐺∘)∘ = Res𝑇 ′/𝑇 𝐺∘ ,

as claimed.

As an immediate application, note that if 𝐺 is the Néron model over 𝒪𝐾,𝑆 of the

group scheme Res𝐿/𝐾 G𝑚,𝐾 and 𝒪𝐿𝑖,𝑆′′ is the integral closure of 𝒪𝐾,𝑆 in 𝐿, then

𝐺∘ = Res𝒪𝐿,𝑆′′/𝒪𝐾,𝑆
G𝑚,𝒪𝐿,𝑆′′ .

Néron models also behave well under étale base change.

2.2.4 Generalized Jacobians over Rings of 𝑆-Integers

In this section, we assume that 𝒞 = 𝒳 rΓ over 𝒪𝐾,𝑆 is a sound clearance hole model

(see Definition 2.1.1) for the 𝐾-curve 𝐶 = 𝑋 rm.

Note in particular that m is étale over Spec𝐾 while Γ is flat, but not necessarily

étale over Spec𝒪𝐾,𝑆.

Recall that 𝐽𝐶 is the generalized Jacobian of 𝐶. Suppose that the basepoint of

the Abel-Jacobi morphism 𝑗 : 𝐶 → 𝐽m extends to a point of 𝒞(𝒪𝐾,𝑆). Since m is étale
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over 𝐾, the commutative group scheme 𝐽m is a semiabelian variety. In particular, 𝐽m

admits a Néron lft-model 𝒥m over 𝒪𝐾,𝑆. Let 𝒥𝒞 := 𝒥 ∘
m be the (fiber-wise) connected

component of the identity of 𝒥m.

We call 𝒥𝒞 the generalized Jacobian of 𝒳 with modulus Γ, or the generalized

Jacobian of 𝒞 := 𝒳 r Γ. Note, however that 𝒥𝒞 depends only on 𝐶 and 𝒪𝐾,𝑆.

We briefly justify our terminology.

By the Néron propety, the Abel-Jacobi morphism 𝑗 : 𝐶 →˓ 𝐽m extends to a

morphism 𝑗 : 𝒞 →˓ 𝒥m. Since 𝒞 is a sound clearance hole model, the fibers of 𝒞 are

geometrically connected. Hence, the image will lie in the connected component of the

identity. So in fact we have an Abel-Jacobi morphism

𝑗 : 𝒞 →˓ 𝒥 ∘
m = 𝒥𝒞 .

For example, if 𝒞 = P1
Zr{0, 2,∞}, then 𝐽m ∼= G𝑚,Q×G𝑚,Q, so 𝒥𝒞 ∼= G𝑚,Z×G𝑚,Z .

If we fix the base point 1 ∈ 𝒞(Z), the Abel-Jacobi morphism is given by

𝑗 : P1
Z r {0, 2,∞} → G𝑚,Z ×G𝑚,Z ,

𝑥 ↦→ (𝑥, 2− 𝑥) .

2.2.5 Generalized Jacobians of Genus Zero Curves

In the examples in this article, we will focus primarily on the case where 𝒞 is a punc-

tured curve of genus zero. In preparation, we recall some facts about the structure of

the generalized Jacobian of such a curve. Set

𝒞 = P1
𝒪𝐾,𝑆

r {(𝑥 : 𝑦) : 𝑓(𝑥, 𝑦) = 0}

for some homogeneous square-free polynomial 𝑓 ∈ 𝒪𝐾,𝑆[𝑥, 𝑦] of content 1.

In this case, the generalized Jacobian of 𝒞 can be understood explicitly in terms
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of norm tori. Write 𝑓 =
∏︀𝑐

𝑖=1 𝑓𝑖 where each 𝑓𝑖 is irreducible over 𝒪𝐾,𝑆. Set

𝑅𝑖 :=

⎧⎪⎨⎪⎩the integral closure of 𝒪𝐾,𝑆 in 𝐾[𝑥]/𝑓(𝑥, 1) if 𝑓𝑖 ̸= 𝑦 ,

𝒪𝐾,𝑆 if 𝑓𝑖 = 𝑦 .

Let 𝐿𝑖 be the fraction field of 𝑅𝑖 and let 𝑆𝑖 be the set of places of 𝐿𝑖 which lie over

some prime in 𝑆.

Each 𝑅𝑖 is module-finite over 𝒪𝐾,𝑆 and we have

𝒥𝒞 ∼=

(︃
𝑐∏︁

𝑖=1

Res𝑅𝑖,𝒪𝐾,𝑆
G𝑚,𝑅𝑖

)︃
/Δ(G𝑚,𝒪𝐾,𝑆

) , (2.2.13)

where Δ(G𝑚,𝒪𝐾,𝑆
) indicates a diagonally embedded copy of G𝑚,𝒪𝐾,𝑆

. If 𝑓𝑖 = 𝑦 for

some 𝑖, so that 𝒞 is a punctured copy of A1, the formula can be simplified by leaving

out the 𝑖th component and the quotient.

Independent of the existence of a rational point on 𝒞, there is an Abel-Jacobi map

𝑗 : 𝒞 → 𝒥𝒞 defined as follows. Over an algebraic closure, 𝑓𝑖 factors as a product of

conjugates of (𝛼𝑖𝑥− 𝛽𝑖𝑦) for 𝛼𝑖 and 𝛽𝑖 integral. Then, we have

𝑗 : 𝒞 → 𝒥𝒞

(𝑥 : 𝑦) ↦→ (𝛼1𝑥− 𝛽1𝑦, . . . , 𝛼𝑐𝑥− 𝛽𝑐𝑦) ,

where we can naturally interpret 𝛼1𝑥−𝛽1𝑦 as an element of the restriction of scalars.

For example, if 𝑓(𝑥, 𝑦) = 𝑥(𝑥− 𝑦)𝑦, so that 𝒞 = P1
𝒪𝐾,𝑆

r {0, 1,∞}, then

𝒥𝒞 ∼= G𝑚,𝒪𝐾,𝑆
×G𝑚,𝒪𝐾,𝑆

.

and

𝑗 : 𝒞 → 𝒥𝒞

𝑥 ↦→ (𝑥, 𝑥− 1) ,
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where we have set 𝑦 = 1 and forgotten the last coordinate because we are using the

simplified form.

The expression (2.2.13) makes it easy to compute the dimension and rank of

𝒥𝒞(𝒪𝐾,𝑆). Since 𝑅𝑖 is finite index in 𝒪𝐿𝑖,𝑆𝑖
and has the same rank as 𝒪𝐿𝑖,𝑆𝑖

, we have

dim𝒥𝒞 = deg(𝑓)− 1 =
𝑐∑︁

𝑖=1

deg(𝑓𝑖)− 1 =
𝑐∑︁

𝑖=1

[𝐿𝑖 : 𝐾]− [𝐾 : 𝐾]

and

rank𝒥𝒞(𝒪𝐾,𝑆) =
𝑐∑︁

𝑖=1

rank𝑅×
𝑖 − rank𝒪×

𝐾,𝑆

=
𝑐∑︁

𝑖=1

rank𝒪×
𝐿𝑖,𝑆𝑖

− rank𝒪×
𝐾,𝑆 (2.2.14)

=
𝑐∑︁

𝑖=1

[𝑟1(𝐿𝑖) + 𝑟2(𝐿𝑖) + #𝑆𝑖 − 1]− [𝑟1(𝐾) + 𝑟2(𝐾) + #𝑆 − 1] .

We can also express the rank in terms of the action of the absolute Galois group of 𝐾

on the set of punctures of our genus zero curve. We state the general result, noting

that for the purpose of proving finiteness of integral points, we may assume the curve

is a punctured P1, or else it automatically has no 𝒪𝐾,𝑆 points.

Lemma 2.2.15. Let 𝒳/𝒪𝐾,𝑆 be a minimal proper regular model of P1
𝐾.. Let 𝐺 =

Gal(𝐾/𝐾) be the absolute Galois group of 𝐾 and for a place p, let 𝐺p denote the

decomposition group of p. Let Γ be a horizontal divisor on 𝒳 . Set

𝒞 = 𝒳 r Γ .

The curve 𝒞 is a sound clearance hole model for its generic fiber 𝐶 := 𝒞𝐾.

Write 𝐺∖Γ(𝐾) for the set of orbits for the action of 𝐺 on Γ(𝐾).

Then, the generic fiber 𝐽𝐶 of 𝒥𝒞 is a torus and

dim𝒥𝒞 = dim 𝐽𝐶 = #Γ(𝐾)− 1,
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and 𝒥𝒞(𝒪𝐾,𝑆) is an abelian group of rank

rank𝒥𝒞(𝒪𝐾,𝑆) =
∑︁

p∈𝑆∪Σ∞

[#(𝐺p∖Γ(𝐾))− 1]− [#(𝐺∖Γ(𝐾))− 1] .

We omit the proof, which is a fairly straightforward computation in the character

theory of tori. All of the ideas needed can be found, for example, Theorem 8.7.2 of

Cohomology of Number Fields by Neukirch, Schmidt, and Wingberg [NSW08], or in

Chapter 6 of Eisenträger’s Ph.D. Thesis [Eis03].

2.3 Descent

When the pair (𝒞,𝒪𝐾,𝑆) does not satisfy the classical Chabauty inequality (3.2.6) or

the RoS Chabauty inequality (4.1.5), we must use another approach to prove that

𝒞(𝒪𝐾,𝑆) is finite. One possibility is to replace (𝒞,𝒪𝐾,𝑆) with a finite set of covers of

𝒞 such that each point in 𝒞(𝒪𝐾,𝑆) is the image of an integral point on some curve in

the set. We define

Definition 2.3.1. A descent set for (𝒞,𝒪𝐾,𝑆) is a finite set D of clearance hole curves

𝒟 over 𝒪𝐾,𝑆 (see Definition 2.1.1) equipped with morphisms 𝑓𝒟 : 𝒟 → 𝒞 such that

𝒞(𝒪𝐾,𝑆) ⊆
⋃︁
𝒟∈D

𝑓𝒟(𝒟(𝒪𝐾,𝑆)) .

If, moreover, the generic fibers 𝒟𝐾 of all of the curves 𝒟 are punctured genus 0 curves,

we say that D is a genus 0 descent set.

Showing that 𝒟(𝒪𝐾,𝑆) is finite for each 𝒟 ∈ D proves that 𝒞(𝒪𝐾,𝑆) is also finite.

Remark 2.3.2. If D is a descent set of (𝒞,𝒪𝐾,𝑆) and for some 𝒟 ∈ D , we have that E

is a descent set for (𝒟,𝒪𝐾,𝑆), then (D r {𝒟})∪ E is also a descent set for (𝒞,𝒪𝐾,𝑆).

This iterated descent approach can be used to construct complicated descent sets

from relatively simple building blocks.

In this remainder of this section, we give a brief overview of the theory of Galois

descent, proving that descent sets exist and giving explicit examples.
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Our exposition mostly follows [Poo17, Sections 6.5 and 8.4]. We recommend

[Sko01] as a further reference.

2.3.1 Torsors

In order to explain the theory of integral descent, we first recall the notion of a torsor

under a group scheme over a base scheme.

Definition 2.3.3 ([Poo17, Definition 6.5.1]). Let 𝐺 → 𝒮 be an fppf group scheme.

A (right) 𝐺-torsor over 𝒮 is an fppf 𝒮-scheme 𝑍 equipped with a right 𝐺-action

𝑍 ×𝒮 𝐺 → 𝑍

such that one of the following equivalent conditions holds:

1. There exists an fppf base change 𝒮 ′ → 𝒮 such that 𝑍𝒮′ is isomorphic to 𝐺𝒮′

as 𝒮 ′-schemes with 𝐺𝒮′ action. (Here the action of 𝐺𝒮′ on itself is by right

translation.)

2. The morphism

𝑍 ×𝒮 𝐺 → 𝑍 ×𝒮 𝑍

(𝑥, 𝑔) ↦→ (𝑥, 𝑥 · 𝑔)

is an isomorphism.

The first condition says that 𝑍 is a twist of 𝐺 (as a scheme with 𝐺-action). As

such, it should not be a surprise that torsors are parameterized by 𝐻1 in a suitable

cohomology theory. For the remainder of this section and the following section, we

make the convention 𝐻1 := 𝐻̌1
𝑓𝑝𝑝𝑓 . We have

Theorem 2.3.4 ([Poo17, Theorem 6.5.10]). Let 𝐺 be an fppf group scheme over a

locally noetherian scheme 𝑆. Suppose that 𝐺 → 𝒮 is an affine morphism. Letting 𝐻1
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denote Čech cohomology on the fppf site, we have

{𝐺-torsors}/isomorphism ∼= 𝐻1(𝒮, 𝐺).

as pointed sets. (The neutral element on the left-hand side is given by the class of the

trivial torsor 𝐺 with right 𝐺-action.)

We are primarily concerned with cases where 𝐺 is finite over 𝒮, so the assumption

that 𝐺 → 𝒮 is affine is not an inconvenience. Following [Poo17, Section 6.5.6] we

assume that 𝐺 → 𝑆 is affine from now on.

Write 𝐻 = 𝐺 viewed as a scheme with a left-action on 𝐺. Given a right 𝐺-torsor

𝑇 corresponding to 𝜏 ∈ 𝐻1(𝑆,𝐺), there is a left-action of the twisted group scheme

𝒢𝜏 on 𝑇 . So, in fact, 𝑇 is a 𝐻𝜏 -𝐺-bitorsor. It is also possible to give 𝑇 the structure

of a 𝐺-𝐻𝜏 -bitorsor by inverting the group action. For instance, one can define the

map 𝐺× 𝑇 → 𝑇 by 𝑔 · 𝑡 = 𝑡𝑔−1. The resulting 𝐺-𝐻𝜏 -bitorsor is denoted 𝑇−1.

Now, given two right 𝐺-torsors 𝑍 and 𝑇 over 𝑆 represented in 𝐻1(𝒮, 𝐺) by 𝜁 and

𝜏 , respectively, let 𝑍
𝐺
× 𝑇−1 be the quotient of 𝑍 ×𝒮 𝑇−1 by the 𝐺-action (𝑥, 𝑡) · 𝑔 =

(𝑥𝑔, 𝑔−1𝑡). The scheme 𝑍
𝐺
× 𝑇−1 is a 𝐺𝜁-𝐺𝜏 -bitorsor over 𝒮 and is affine over 𝒮.

2.3.2 Constructing descent sets

Suppose now that 𝒮 is finite-type and separated over 𝒪𝐾,𝑆. Let 𝒢 be a finite flat

group scheme over 𝒪𝐾,𝑆, and suppose that 𝑓 : 𝑍 → 𝒮 is a 𝒢𝒮-torsor. For any 𝒢

torsor 𝑇 over 𝒪𝐾,𝑆 corresponding to 𝜏 ∈ 𝐻1(𝒪𝐾,𝑆,𝒢), the twist

𝑍𝜏 := 𝑍
𝒢𝒮
× (𝑇𝒮)

−1

is a right (𝒢𝜏 )𝒮-torsor over 𝒮, with structure map 𝑓 𝜏 : 𝑍𝜏 → 𝒮.

Now, slightly generalizing [Poo17, Section 8.4.1], we can define an evaluation map

𝒮(𝒪𝐾,𝑆)×𝐻1(𝒮,𝒢) → 𝐻1(𝒪𝐾,𝑆,𝒢)

(𝑥, 𝜁) ↦→ 𝜁(𝑥) := 𝑥*(𝜁)
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by pulling back cohomology classes.

Define

𝒮(𝒪𝐾,𝑆)𝜏 := {𝑥 ∈ 𝒮(𝒪𝐾,𝑆) : 𝜁(𝑥) = 𝜏} .

Clearly,

𝒮(𝒪𝐾,𝑆) =
⋃︁

𝜏∈𝐻1(𝒪𝐾,𝑆 ,𝒢)

𝒮(𝒪𝐾,𝑆)𝜏 .

By a slight generalization of [Poo17, Theorem 8.4.1],

𝑓 𝜏 (𝑍𝜏 (𝒪𝐾,𝑆)) = 𝒮(𝒪𝐾,𝑆)𝜏 ,

so in fact,

𝒮(𝒪𝐾,𝑆) =
⋃︁

𝜏∈𝐻1(𝒪𝐾,𝑆 ,𝒢)

𝑓 𝜏 (𝑍𝜏 (𝒪𝐾,𝑆)) .

By [Poo17, Exercise 8.4], 𝐻1(𝒪𝐾,𝑆,𝒢) is finite, so in fact, we have

Proposition 2.3.5. The set

𝒵 =
{︀
𝑓 𝜏 : 𝑍𝜏 → 𝒮 : 𝜏 ∈ 𝐻1(𝒪𝐾,𝑆,𝒢)

}︀
is a descent set for (𝒮,𝒪𝐾,𝑆).

2.3.3 Explicit examples of descent sets

In certain cases, we can construct descent sets explicitly.

Suppose that 𝒜 is a separated group scheme of finite type over 𝒪𝐾,𝑆 and we have

a morphism 𝑗 : 𝒞 →˓ 𝒜 such that the restriction of 𝑗 to the generic fiber is finite.

Suppose that ℬ is another separated group scheme of finite type over 𝒪𝐾,𝑆 equipped

with a finite, flat map 𝜑 : ℬ → 𝒜 of group schemes such that 𝜑(ℬ(𝒪𝐾,𝑆)) has finite

index in 𝒜(𝒪𝐾,𝑆). Suppose also that 𝒜(𝒪𝐾,𝑆) is finitely generated. For example,

this holds if 𝒜 is the connected component of the identity of the Néron model of a

semiabelian variety.)

Choose (right) coset representatives 𝑃1, . . . , 𝑃𝑛 for 𝜑(ℬ(𝒪𝐾,𝑆)) in 𝒜(𝒪𝐾,𝑆). For
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each 𝑖 ∈ {1, . . . , 𝑛}, there is a morphism of 𝒪𝐾,𝑆-schemes

𝜑𝑖 : ℬ → 𝒜 ,

𝑄 ↦→ 𝜑(𝑄) · 𝑃𝑖 .

Then,

𝒜(𝒪𝐾,𝑆) =
𝑛∐︁

𝑖=1

𝜑(ℬ(𝒪𝐾,𝑆)) · 𝑃𝑖 =
𝑛∐︁

𝑖=1

𝜑𝑖(ℬ(𝒪𝐾,𝑆)) . (2.3.6)

Let 𝒟𝑖 be the pullback of 𝒞 by 𝜑𝑖. From the pullback diagram

𝒟𝑖 ℬ

𝒞 𝒜

𝜑𝑖

𝑗𝒟

𝜑𝑖

𝑗

and (2.3.6), we see that 𝑄 ∈ 𝒞(𝒪𝐾,𝑆) belongs to 𝜑𝑖(𝒟𝑖(𝒪𝐾,𝑆)) if and only if 𝑄 ∈

ℬ(𝒪𝐾,𝑆) · 𝑃𝑖. It follows that

𝒞(𝒪𝐾,𝑆) =
𝑛∐︁

𝑖=1

𝜑𝑖(𝒟𝑖(𝒪𝐾,𝑆)) .

In particular, {𝒟𝑖 : 𝑖 ∈ {1, . . . , 𝑛}} will be a descent set for (𝒞,𝒪𝐾,𝑆) so long as the

𝒟𝑖 are sound clearance hold curves over 𝒪𝐾,𝑆.

In this construction, each 𝒟𝑖 is a torsor over 𝒞 for the finite group scheme ker(𝜑𝑖 :

ℬ → 𝒜). In particular, this construction is an example of descent.

Example 2.3.7. If 𝒞/𝒪𝐾,𝑆 is P1 r ({0,∞} ∪ Γ′), then there is a natural inclusion

𝒞 →˓ G𝑚,𝒪𝐾,𝑆
. Taking 𝜑 to be the 𝑛th power map from G𝑚 to itself, this procedure

gives a descent set D for (𝒞,𝒪𝐾,𝑆) indexed by elements of 𝒪×
𝐾,𝑆/𝒪

×𝑛
𝐾,𝑆.

Every covering curve in D is a punctured P1 for which we can write down explicit

equations. If we choose a polynomial 𝑓 such that

Γ′ = {𝑥 : 𝑓(𝑥) = 0} ,
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and let 𝛼 range over 𝒪×
𝐾,𝑆/(𝒪

×
𝐾,𝑆)

𝑛, then D consists of the curves

𝑓𝛼 : P1 r {0,∞} ∪ {𝑥 : 𝑓(𝛼𝑥𝑛) = 0} → P1 r {0,∞} ∪ {𝑥 : 𝑓(𝑥) = 0}

𝑥 ↦→ 𝛼𝑥𝑛

Remark 2.3.8. We show that Example 2.3.7 combined with the iterated descent de-

scribed in Remark 2.3.2 is essentially the only way to produce descent sets consisting

of punctured genus 0 curves which are torsors from group schemes over the base.

Let 𝜑 : P1
𝐾

→ P1
𝐾

be a Galois cover. I.e., suppose that the induced map on

function fields identifies 𝜑*(𝐾(𝑡)) as a subgroup of 𝐾(𝑠) such that the extension is

Galois.

Let 𝐵 be the set of 𝐾-points on the base over which of 𝜑 is branched. The

Riemann-Hurwitz theorem implies that

2 deg(𝜑)− 2 = deg(𝜑) ·#𝐵 −
∑︁
𝑃∈𝐵

#{𝑄 ∈ P1(𝐾) : 𝜑(𝑄) = 𝑃} .

For any 𝑃 ∈ 𝐵, we have #{𝑄 ∈ P1(𝐾) : 𝜑(𝑄) = 𝑃} ≤ 𝑑/2, so 1 < #𝐵 < 4.

If #𝐵 = 2, then 𝜑 : P1 → P1 is a isomorphic to the 𝑛th power map.

If #𝐵 = 3, then deg(𝜑) = 6 and 𝜑 : P1 → P1 is an 𝑆3-cover. Using the structure of

𝑆3 as a solvable group, 𝜑 can be constructed as the composition of two Galois covers

which are ramified at exactly 2 points.
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Chapter 3

The Method of

Chabauty-Coleman-Skolem

In this section, we recall the 𝑝-adic method of Chabauty and Coleman for bounding

the number of 𝑆-integral points on a sound clearance hole curve 𝒞/𝒪𝐾,𝑆. (See Defini-

tion 2.1.1.) Although Chabauty’s method is typically described in the special case of

𝐾-rational points on smooth, proper, and geometrically integral curves, we present

the general case with an eye towards computing 𝑆-integral points on punctured genus

zero curves. In a way, this makes a return to the original inspiration for Chabauty’s

method — an analogous strategy (due to Skolem) for solving Thue equations, i.e.

computing the set

{(𝑎, 𝑏) ∈ Z2 : 𝑓(𝑎, 𝑏) = 𝑐}

for 𝑓 ∈ Z[𝑥, 𝑦] a homogeneous polynomial of degree 𝑑 ≥ 3. Our exposition mostly

follows that of [MP12], which we enthusiastically recommend.

3.1 Chabauty’s result

We begin with an overview of Chabauty’s idea adapted to our more general setting.

Our setup is as in Section 2.1.

Our goal is to compute the set 𝒞(𝒪𝐾,𝑆) of 𝑆-integral points on the punctured
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curve 𝒞.

Fix a prime p /∈ 𝑆. Let 𝐾p be the completion of 𝐾 at p and let 𝒪p denote the

ring of integers of 𝐾p. Then there is a commutative diagram:

𝒞(𝒪𝐾,𝑆) 𝒞(𝒪p)

𝒥 (𝒪𝐾,𝑆) 𝒥 (𝒪p) .

In particular, inside of 𝒥 (𝒪p), we have the inclusion

𝒞(𝒪𝐾,𝑆) ⊆ 𝒥 (𝒪𝐾,𝑆) ∩ 𝒞(𝒪p) .

Now, 𝒞 has relative dimension one over 𝒪𝐾,𝑆, so if we can find locally 𝑝-adic

analytic functions on 𝒥 (𝒪p) which vanish identically on 𝒥 (𝒪𝐾,𝑆) but do not vanish

identically on 𝒞(𝒪p), we will be able to prove that the intersection, and therefore

𝒞(𝒪𝐾,𝑆), is finite.

Let dim𝒥 denote the relative dimension of 𝒥 over 𝒪𝐾,𝑆. Then, 𝒥(𝒪p) is a Q𝑝-

analytic manifold (in the naïve sense of Serre [Ser65] or [Ser06, Part 2, Section 3]) of

dimension (dim𝒥) · [𝐾p : Q𝑝].

Also, 𝒥 (𝒪𝐾,𝑆) is a finitely generated group of some rank 𝑟. As we will see, its

closure 𝒥 (𝒪𝐾,𝑆) in 𝒥 (𝒪𝐾p) is a 𝑝-adic Lie subgroup of some dimension 𝜌 ≤ 𝑟. If

𝜌 < (dim𝒥 ) · [𝐾p : Q𝑝], then 𝒥 (𝒪𝐾,𝑆) $ 𝒥(𝐾p) will be a proper 𝑝-adic analytic Lie

subgroup. Since 𝒞 is an irreducible curve, if 𝒞(𝒪p) is not contained in 𝒥(𝒪𝐾,𝑆), the

intersection

𝒥 (𝒪𝐾,𝑆) ∩ 𝒞(𝒪p)

will be finite.

Indeed, when 𝐾 = Q𝑝 and 𝑗 : 𝒞 → 𝒥 is an Abel-Jacobi embedding of a proper

curve into its Jacobian, this is what Chabauty proved.

Theorem 3.1.1 ([Cha41], as stated in [MP12, Theorem 4.4]). Let 𝑋 be a smooth,

projective, geometrically integral curve of genus 𝑔 ≥ 2 over Q. Let 𝐽 be the Jacobian

of 𝑋. Let 𝑝 be a prime and let 𝜌 = dim 𝐽(Q) ≤ rank 𝐽(Q). Suppose that 𝜌 < 𝑔.

Then, 𝑋(Q𝑝) ∩ 𝐽(Q) is finite. It follows that 𝑋(Q) is finite as well.
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Chabauty’s original result was not effective. Coleman later used his theory of 𝑝-

adic integration to show how to explicitly compute equations vanishing on 𝒥 (𝒪𝐾,𝑆).

The remainder of this section is an overview of the ideas needed for Coleman’s ap-

proach, followed by some more recent further improvements.

3.2 The 𝑝-adic logarithm map

In this section, we assume that 𝐾p is a 𝑝-adic field with ring of integers 𝒪p. Let 𝒥 be

a semi-abelian variety over 𝒪p of relative dimension 𝑛.

The set 𝒥 (𝐾p) has the structure of a Q𝑝-Lie group of dimension 𝑛 · [𝐾p : Q𝑝]. Let

𝑒 be the identity element of 𝐽(𝐾p) and write Lie𝒥𝐾p for the Lie algebra of 𝒥 (𝐾p),

i.e. the tangent space of 𝒥 (𝐾p) at 𝑒.

Since 𝒥 is of finite type, 𝒥 (𝒪p) has the structure of a profinite group. The

profinite topology agrees with the topology from 𝒥 (𝐾p).

In particular, for any 𝑥 ∈ 𝒥 (𝒪p), there is some increasing sequence of positive

integers 𝑛𝑖 such that lim𝑖→∞ 𝑥𝑛𝑖 = 𝑒. [Bou98, III.7.6., Proposition 10] says that there

is a unique 𝑝-adic analytic homomorphism

log : 𝒥 (𝒪p) → Lie𝒥𝐾p ,

called the 𝑝-adic logarithm, which is injective with analytic inverse after restricting

the domain and codomain to suitable open subgroups.

The 𝑝-adic logarithm map can be understood explicitly as an antiderivative, as

we now explain.

Let 𝐻0(𝒥𝐾p ,Ω
1)inv denote the vector space of translation-invariant global differ-

entials on 𝒥𝐾p . We have

dim𝐾p 𝐻
0(𝒥𝐾p ,Ω

1)inv = 𝑛 .

Let 𝜔 ∈ 𝐻0(𝒥𝐾p ,Ω
1)inv and choose local coordinates 𝑡1, . . . , 𝑡𝑛 on 𝒥𝐾p at 𝑒. In a
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neighborhood of 𝑒, the 1-form 𝜔 can be expanded as a power series

𝜔|𝑈 =

𝑔+𝛾∑︁
𝑖=1

𝐹𝑖(𝑡1, . . . , 𝑡𝑔+𝛾)𝑑𝑡𝑖 .

Integrating the power series formally, and restricting 𝑈 further if necessary gives a

map

𝜂 : 𝑈 → 𝐾p ,

𝑃 →
∫︁ 𝑃

𝑒

𝜔 .

The map 𝜂 extends uniquely to a homomorphism 𝜂 : 𝒥 (𝒪p) → 𝐾p.

We abuse notation slightly and write
∫︀ 𝑃

𝑒
𝜔 for 𝜂, even when 𝑃 is not in the radius

of convergence of the 𝑝-adic power series.

Now, formal integration is linear in the differential form, so in fact, this defines a

homomorphism:

𝐻0(𝒥𝐾p ,Ω
1)inv → Hom(𝒥 (𝒪p), 𝐾p) .

Equivalently, we have a morphism of 𝑝-adic Lie groups

log : 𝒥 (𝒪p) → (𝐻0(𝒥𝐾p ,Ω
1)inv)

∨ ∼= Lie𝒥𝐾p ,

which can be identified with the 𝑝-adic logarithm map defined earlier.

This map can be written explicitly as follows: Let {𝜔1, . . . , 𝜔𝑛} be a basis for

𝐻0(𝒥𝐾p ,Ω
1)inv. Taking the dual basis determines an isomorphism Lie𝒥𝐾p

∼= 𝐾𝑛
p . In

this setup, the logarithm map can be written explicitly as

log : 𝒥 (𝒪p) → 𝐾𝑛
p ,

𝑃 ↦→
(︂∫︁ 𝑃

𝑒

𝜔1, . . . ,

∫︁ 𝑃

𝑒

𝜔𝑛

)︂
.

Since the logarithm map is a homomorphism and 𝐾𝑛
p is torsion-free, we see that
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the torsion subgroup of 𝒥 (𝒪𝐾p) is contained in ker(log). In fact, these sets are equal.

The 𝑝-adic logarithm map is a local homeomorphism, with inverse defined on a

neighborhood of 0 by a formal exponential map. As a consequence, we have:

Proposition 3.2.1. Suppose that 𝐺 ⊂ 𝒥 (𝒪p) is a rank 𝑟 finitely-generated subgroup.

The closure 𝐺 of 𝐺 in 𝒥 (𝐾p) is a 𝑝-adic Lie subgroup of dimension 𝜌 ≤ 𝑟.

Proof. Since log is a homomorphism and ker(log) consists of torsion elements, log𝐺 ⊂

𝐾p is a finitely-generated subgroup of rank 𝑟. Then, log𝐺 = Z𝑝 · log𝐺 is a 𝑝-adic Lie

subgroup of 𝐾𝑛
p . Moreover,

𝜌 = rankZ𝑝 Z𝑝 · log𝐺 ≤ rank𝐺 = 𝑟 .

Since log is locally a homeomorphism, log𝐺 = log𝐺 and so 𝐺 is a 𝑝-adic Lie subgroup

of 𝐽(𝐾p) of dimension 𝜌 ≤ 𝑟.

Remark 3.2.2. Let 𝐺 be as in Proposition 3.2.1. The set 𝐺 has a natural Z𝑝-structure,

but in general will not carry an 𝒪p-structure. If we want to construct locally 𝐾p-

analytic functions which vanish on 𝐺, we can do the following.

Let 𝜌′ = dim𝒪p 𝒪p · log𝐺. Clearly 𝜌′ ≤ 𝜌.

When 𝜌′ < 𝑛, we construct 𝑛− 𝜌′ functions on 𝒥 (𝒪p) which vanish on 𝐺.

1. Fix a set of generators {𝑃1, . . . , 𝑃𝑟} for a finite index subgroup of 𝐺.

2. Compute the images log(𝑃1), . . . , log(𝑃𝑟) and put them in the rows of a matrix

𝑀 . The resulting matrix has rank 𝜌′ over 𝐾p.

3. Let 𝑎⃗1 = (𝑎1,1, . . . , 𝑎𝑛,1), . . . , 𝑎⃗𝑛−𝜌′ span the kernel of 𝑀 .

4. Set 𝜔′
𝑗 =

∑︀𝑛
𝑖=1 𝑎𝑖,𝑗𝜔𝑖. The functions

𝜂𝑗 : 𝒥 (𝒪p) → 𝐾p (3.2.3)

𝑃 ↦→
∫︁ 𝑃

𝜖

𝜔′
𝑗
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for 𝑗 = 1, . . . , 𝑛 − 𝜌′ vanish whenever 𝑃 ∈ {𝑃1, . . . , 𝑃𝑟}. Since the 𝜔𝑖 are

translation-invariant, by additivity, the 𝜂𝑗 vanish on all of 𝐺.

We typically hope to apply this construction to the finitely generated subgroup

𝒥 (𝒪𝐾,𝑆).

Remark 3.2.4. Unfortunately, the functions constructed in Remark 3.2.2 are some-

what inefficient. As a Q𝑝 Lie group, their common vanishing locus has dimension

𝜌′ · [𝐾p : Q𝑝], which could be much larger than 𝜌 = dim𝐺.

Of course this problem does not exist when 𝐾p = Q𝑝. If we replaced 𝒥𝐾p with

Res𝐾p/Q𝑝 𝒥𝐾p before taking integrals, this problem would go away. Later on, we take

this restriction of scalars at the level of number fields, which also allows us to use

information from other primes above 𝑝.

Suppose now that we are in the situation where 𝑗 : 𝒞 → 𝒥 is an Abel-Jacobi

embedding of a curve into generalized Jacobian (in the sense of Section 2.2). Take

𝐺 = 𝒥 (𝒪𝐾,𝑆) in Remark 3.2.2. Although is is possible that 𝜌′ < 𝑟, in the typical case,

we expect that 𝑟 = 𝜌′. For instance, under Leopoldt’s Conjecture, 𝑟 = 𝜌′ whenever

𝑔𝒞 = 0.

In particular, we know that Chabauty’s method will prove that 𝒞(𝒪𝐾,𝑆) is finite

when 𝑟 ≤ dim𝒥𝐾 − 1.

To ease our future discussion of when Chabauty’s method applies, we make the

following definition.

Definition 3.2.5. Let 𝒞/𝒪𝐾,𝑆 be a sound clearance hole curve. Let 𝒥 be the gener-

alized Jacobian of 𝒞.

We say that the pair (𝒞,𝒪𝐾,𝑆) satisfies the classical Chabauty inequality if

rank𝒥 (𝒪𝐾,𝑆) ≤ dim𝒥𝐾 − 1 . (3.2.6)

3.3 Coleman’s approach

In this section, we discuss Coleman’s approach to computing the 𝑝-adic analytic

functions constructed in Remark 3.2.2 and bounding the number of points of 𝒞(𝒪𝐾,𝑆).
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The key idea is to replace integration on the Jacobian (which is hard to compute)

with integration on the curve (which is easier to compute).

The morphism 𝑗 : 𝒞 → 𝒥 induces a homomorphism of vector spaces

𝑗* : 𝐻0(𝒥𝐾p ,Ω
1) → 𝐻0(𝒞𝐾p ,Ω

1) .

Remark 3.3.1. If 𝒥𝐾p is the generalized Jacobian of 𝒞𝐾p , the morphism 𝑗* induces an

isomorphism of 𝐾p-vector spaces

𝑗* : 𝐻0(𝒥𝐾p ,Ω
1)inv . → 𝐻0(𝒞𝐾p ,Ω

1(log)),

where Ω1(log) denotes the sheaf of meromorphic 1-forms with poles of order at most

1 at the punctures of 𝒞𝐾p and no other poles. (See [Ser88, Section V.2.10])

Suppose that 𝑃1 and 𝑃2 reduce to the same point of 𝒞(Fp). Then, for any 𝜔 ∈

𝐻0(𝒥𝐾p ,Ω
1)inv ., we have ∫︁ [𝑃1−𝑃2]

𝑒

𝜔 =

∫︁ 𝑃2

𝑃1

𝑗*𝜔 ,

where the second integral is given by formal integration of power series in terms of a

local parameter on 𝒞.

More precisely, fix 𝑄 ∈ 𝒞(Fp) and let 𝑡 ∈ 𝒪𝒞,𝑄 be such that the restriction to the

special fiber 𝑡|𝒞Fp is a uniformizer at 𝑄. The map

𝑡 : {𝑃 ∈ 𝒞(𝒪p) : 𝑃 (mod p) = 𝑄} ∼→ p · 𝒪p

from the residue disc around 𝑃 to p𝒪p is a bijection. Moreover, if 𝜔 ̸= 0, then up to

scaling by an element of 𝐾×
p , the 1-form 𝑗*𝜔 can be written in the form 𝑓(𝑡)𝑑𝑡 for

some 𝑓 ∈ 𝒪p[[𝑡]]. We may assume that some coefficient of 𝑓 lies in 𝒪×
p . Let 𝐹 be the

formal antiderivative of 𝑓 . Then

∫︁ 𝑃2

𝑃1

𝑗*𝜔 =

∫︁ 𝑡(𝑃2)

𝑡(𝑃1)

𝑓(𝑡) 𝑑𝑡 = 𝐹 (𝑡(𝑃2))− 𝐹 (𝑡(𝑃1)) .
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If we take 𝜔 ̸= 0 such that ∫︁ 𝑃

𝑒

𝜔 = 0

for all 𝑃 ∈ 𝒥 (𝒪𝐾,𝑆) as in Remark 3.2.2, and fix a basepoint 𝑃0 in each residue disc

on 𝒞, we can bound #𝒞(𝒪𝐾,𝑆) by using Newton polygons to bound the number of

zeros of 𝐹 (𝑡(𝑃 ))−𝐹 (𝑡(𝑃0)) on each residue disc based on the 𝑝-adic valuations of the

coefficients of 𝐹 .

With this approach, Coleman proved

Theorem 3.3.2 ([Col85, Corollary 4a]). Let 𝑋 be a smooth, projective, geometrically

integral curve of genus 𝑔 ≥ 2 over 𝐾. Let 𝐽 be the Jacobian of 𝑋. Let p be a prime

of 𝐾 which is unramified over Q, lying above 𝑝 > 2𝑔. Let 𝜌 = dim 𝐽(Q) ≤ rank 𝐽(Q).

Suppose that 𝜌 < 𝑔. Then,

#𝑋(𝐾) ≤ #𝑋(Fp) + (2𝑔 − 2) .

Coleman also showed how to bound #𝑋(𝐾) when 𝑝 ≤ 2𝑔, although the bounds

are not as good.

Remark 3.3.3. In Remark 3.2.2, we constructed at least dim𝒥𝐾 − 𝜌 functions simul-

taneously vanishing on 𝒥 (𝒪p). If one considers all of these functions instead of a

single function, [Sto06, Corollary 6.7] shows that Coleman’s bound can be improved

to #𝑋(Fp) + 2𝜌.

The same ideas used by Coleman and Stoll apply to bound 𝒪𝐾,𝑆 points on a sound

clearance hole curve 𝒞/𝒪𝐾,𝑆, although the bounds produced by the method may be

different.
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Chapter 4

Chabauty for Restrictions of Scalars

This section aims to give an overview of Chabauty’s method for restrictions of scalars

of curves (or RoS Chabauty, for short). Our description differs from Siksek [Sik13] in

two main ways. First, with an eye towards testing the theory on the unit equation,

we develop the method for 𝑆-integral points on models of curves which may not be

complete. Second, after taking restrictions of scalars, we consider points valued in the

Galois closure of the field that we start with. This simplifies the multivariate 𝑝-adic

power series that appear when applying the method.

4.1 Introduction to RoS Chabauty

The classical Chabauty inequality (3.2.6) is somewhat inefficient in two ways:

1. As we saw in Remark 3.2.4, the vanishing locus of the Chabauty functions can

be much larger than 𝒥 (𝒪𝐾,𝑆), especially when [𝐾p : Q𝑝] is large.

2. If 𝑝 splits in 𝐾, the classical Chabauty-Coleman approach uses information only

at one of the primes p lying over 𝑝.

We can solve both of these problems and weaken the hypothesis of classical Chabauty

somewhat using restriction of scalars, as follows:
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Set

𝒱 := Res𝒪𝐾,𝑆/Z𝑆′ 𝒞 and 𝒜 := Res𝒪𝐾,𝑆/Z𝑆′ 𝒥 .

The map 𝑗 induces a generically finite map 𝑗 : 𝒱 →˓ 𝒜. Similarly to classical Chabauty,

there is a commutative diagram:

𝒞(𝒪𝐾,𝑆) 𝒱(Z𝑆′) 𝒱(Z𝑝)

𝒥 (𝒪𝐾,𝑆) 𝒜(Z𝑆′) 𝒜(Z𝑝).

(4.1.1)

We observe:

1. Although 𝒜 might not be semi-abelian, there is a logarithm map

log : 𝒜(Z𝑝) → Q𝑑·dim𝒥𝐾
𝑝

much like in the case of classical Chabauty, even if 𝑝 is ramified in 𝐾. In

particular, 𝒜(Z𝑝) is a 𝑝-adic Lie group of dimension 𝑑 · dim(𝒥 ) over Z𝑝.

2. The closure of 𝒜(Z𝑆′) ⊂ 𝒜(Z𝑝) in the 𝑝-adic topology is a 𝑝-adic Lie group

of dimension 𝜌 over Z𝑝 for some 𝜌 ≤ 𝑟. In contrast to classical Chabauty (as

described in Section 3 and in particular Remark 3.2.4,) the set 𝒜(Z𝑆′) is finite-

index in some subgroup cut out by locally analytic 𝑝-adic functions obtained by

composing log with linear functionals Q𝑑·dim𝒥𝐾
𝑝 → Q𝑝.

3. Inside of 𝒥 (𝒪p), we have the inclusion

𝒞(𝒪𝐾,𝑆) = 𝒱(Z𝑆′) ⊆ 𝒱(Z𝑝) ∩ 𝒜(Z𝑆′). (4.1.2)

If codim(𝒱 ,𝒜) + codim(𝒜(Z𝑆′),𝒜(Z𝑝)) ≥ dim𝒜, or equivalently if

𝜌 ≤ 𝑑(dim𝒥𝒞 − 1), (4.1.3)
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then if the intersection is ‘sufficiently generic’ (e.g. transverse) the right-hand side of

(4.1.2) will consist of isolated points, which would imply that 𝒞(𝒪𝐾,𝑆) is finite.

By analogy with the classical case, we make the following definition.:

Definition 4.1.4. Let 𝒞/𝒪𝐾,𝑆 be a sound clearance hole curve (see Definition 2.1.1)

and let 𝒥 be the generalized Jacobian of 𝒞 in the sense of Section 2.2.

The pair (𝒞,𝒪𝐾,𝑆) satisfies the RoS Chabauty inequality if

𝑟 ≤ 𝑑(dim𝒥𝐾 − 1). (4.1.5)

Since the generic fiber of 𝒜 is a semiabelian variety, we can still understand the

logarithm map in terms of integration on 𝒜. In particular, the vector space

Ω′ :=

{︂
𝜔 ∈ 𝐻0(𝒜Q𝑝 ,Ω

1)inv :

∫︁ 𝑃

0

𝜔 = 0 for all 𝑃 ∈ 𝒜(Z𝑆′)

}︂
, (4.1.6)

has dimension at least 𝑑 · dim𝒥𝐾 − 𝑟, and

𝒥(𝒪𝐾,𝑆) = 𝒜(Z𝑆′) ⊆
{︂
𝑃 ∈ 𝒜(Z𝑝) :

∫︁ 𝑃

0

𝜔 = 0 for all 𝜔 ∈ Ω′
}︂
.

Analogously to the classical Chabauty case, when 𝑃1, 𝑃2 ∈ 𝒜(Z𝑆′) are the images

of points of 𝒱(Z𝑆′) and 𝜔 is an invariant differential, we can compute the integral

∫︁ 𝑃2

𝑃1

𝜔

on 𝒱 by taking a pullback. More precisely, fix 𝑄 ∈ 𝒱(F𝑝) and let 𝑡1, . . . , 𝑡𝑑 in the local

ring 𝒪𝒱,𝑄 be generators for the maximal ideal m𝒱,𝑄 of 𝒪𝒱,𝑄. The functions 𝑡1, . . . , 𝑡𝑑

induce a map

(𝑡1, . . . , 𝑡𝑑) : {𝑃 ∈ 𝒱(𝒪p) : 𝑃 (mod 𝑝) = 𝑄
∼→ (𝑝Z𝑝)

𝑑 ,

which is a bijection from the residue disc around 𝑃 to (𝑝Z𝑝)
𝑑. Much like in the

classical case, after possibly changing scaling by an element of Q×
𝑝 , the 1-form 𝑗*𝜔
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can be written in the form
∑︀𝑑

𝑗=1 𝑓𝑗(𝑡1, . . . , 𝑡𝑑)𝑑𝑡𝑗 for some 𝑓1, . . . , 𝑓𝑑 ∈ Z𝑝[[𝑡1, . . . , 𝑡𝑑]]

where some 𝑓𝑗 has a coefficient in Z×
𝑝 .

Since invariant 1-forms on 𝒜 are closed and pullbacks of closed forms are closed,

there is some 𝐹𝜔 ∈ Q𝑝[[𝑡1, . . . , 𝑡𝑑]] such that 𝑑𝐹𝜔 = 𝜔

Then, for 𝑃1 and 𝑃2 in the same residue disc as 𝑃 , we have

∫︁ 𝑃2

𝑃1

𝑗*(𝜔) = 𝐹𝜔((𝑡1, . . . , 𝑡𝑑)(𝑃2))− 𝐹𝜔((𝑡1, . . . , 𝑡𝑑)(𝑃1)) .

Notably, the functions 𝐹𝜔 are no longer expressible as (locally) 𝑝-adic analytic

functions in a single variable. Instead, on sufficiently small balls, the 𝐹𝜔 will be given

by 𝑑-variable power series which converge on a neighborhood of the balls.

Let C𝑝 be a completion of Q𝑝 and let 𝒪C𝑝 be its ring of integers.

Given 𝑑 linearly independent one-forms 𝜔 and 𝛼 ∈ Q, such that the 𝐹𝜔 converge

on a neighborhood of 𝑃 + 𝑝𝛼𝒪𝑑
C𝑝
, the common vanishing locus of these power series

will have finitely many isolated points in the disc 𝑃 + 𝑝𝛼𝒪𝑑
C𝑝
.

However, if we are unlucky (or in a bad situation), the common vanishing locus

of these functions may not consist exclusively of isolated points. Unfortunately, such

bad situations can occur for a geometric reason.

Before continuing with the development of RoS Chabauty, we discuss two geomet-

ric reasons why the common vanishing locus of the 𝐹𝜔 for the curve 𝒞/𝒪𝐾,𝑆 may not

consist of isolated points.

One such geometric obstruction occurs when 𝒞 is the base change of a curve 𝒟 for

which the vanishing locus of the 𝐹𝜔 in (Res𝒟)(Z𝑝) is infinite (e.g., because 𝒟 does

not satisfy the RoS Chabuaty inequality.)

A second geometric obstruction occurs when there is a morphism 𝑓 : 𝒞 → 𝒟 such

that the vanishing locus of the 𝐹𝜔 for 𝒟 does not consist of isolated points and the

Prym scheme 𝒫 (the group scheme quotient 𝒫 := 𝒥𝒞/𝑓
*(𝒥𝒟)) has the property that

the 𝑝-adic closure

(Res𝒪𝐾,𝑆/Z𝑆′ 𝒫)(𝒪𝐾,𝑆) ⊂ (Res𝒪𝐾,𝑆/Z𝑆′ 𝒫)(Z𝑝)
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is finite-index.

We discuss these obstructions, which we call base change obstructions and full

Prym obstructions in the next two sections.

In all known cases where 𝒱(Z𝑝)∩𝒜(Z𝑆′) does not consist of finitely many isolated

points, it can be explained by iterated application of these obstructions.

4.2 Base change obstructions

Suppose that 𝑘 ⊂ 𝐾 is a subfield and that 𝑆𝑘 is the set of primes of 𝑘 lying under

primes in 𝑆. Suppose also that 𝒟/𝒪𝑘,𝑆𝑘
is a sound clearance hole curve which becomes

isomorphic to 𝒞 after base change to 𝒪𝐾,𝑆, i.e., a curve such that

𝒟𝒪𝐾,𝑆
∼= 𝒞.

We also have (𝒥𝒟)𝒪𝐾,𝑆
∼= 𝒥𝒞 compatibly with the Abel-Jacobi maps.

Letting 𝒲 := (Res𝒪𝑘,𝑆𝑘
/Z𝑆′ 𝒟) and ℬ := (Res𝒪𝑘,𝑆𝑘

/Z𝑆′ 𝒥𝒟), we have the following

commutative diagram:

𝒲(Z𝑆′) ℬ(Z𝑆′)

𝒱(Z𝑆′) 𝒜(Z𝑆′)

𝒲(Z𝑝) ℬ(Z𝑝)

𝒱(Z𝑝) 𝒜(Z𝑝)

Clearly, 𝒲(Z𝑝) ∩ ℬ(Z𝑆′) ⊂ 𝒱(Z𝑝) ∩ 𝒜(Z𝑆′) inside of 𝒜(Z𝑝). If

dimℬ(Z𝑆′) > [𝑘 : Q] · (dim𝒥𝒟 − 1),

then 𝒲(Z𝑝) ∩ ℬ(Z𝑆′) will (typically) have positive dimension as a 𝑝-adic analytic

variety in the sense of [Ser65], so 𝒱(Z𝑝) ∩ 𝒜(Z𝑆′) will have positive dimension as a

𝑝-adic analytic variety as well. In particular, both sets will be infinite.
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Based on this observation, we say

Definition 4.2.1. A base change obstruction to RoS Chabauty for (𝒞,𝒪𝐾,𝑆) is a pair

(𝒟,𝒪𝑘,𝑆𝑘
) where 𝑘 is a subfield of 𝐾, 𝑆𝑘 is the set of primes of 𝑘 lying under primes

in 𝑆, 𝒟 is a sound clearance hole curve over 𝒪𝑘,𝑆𝑘
, and 𝒟𝒪𝐾,𝑆

∼= 𝒞 such that

𝑗((Res𝒪𝑘,𝑆𝑘
/Z𝑆′ 𝒟)(Z𝑝)) ∩ (Res𝒪𝑘,𝑆𝑘

/Z𝑆′ 𝒥𝒟)(Z𝑆′)

inside (Res𝒪𝑘,𝑆𝑘
/Z𝑆′ 𝒥𝒟)(Z𝑝) is infinite.

A strong base change obstruction to RoS Chabauty is a base change obstruction

such that

rank𝒥𝒟(𝒪𝑘,𝑆𝑘
) > [𝑘 : Q] · (dim𝒥𝒟 − 1) . (4.2.2)

This is the inequality that one would expect to lead to the above intersection being

infinite (although this implication does not always hold.) If no such 𝒟 exists, we say

that (𝒞,𝒪𝐾,𝑆) has no strong base change obstruction to RoS Chabauty.

Strong base change obstructions do show up in practice.

Example 4.2.3. If 𝒞 = P1 r {0, 1,∞}, 𝐾 is a CM sextic field, and 𝑘 is the totally

real cubic subfield of 𝐾, then 𝒥 ∼= G𝑚 ×G𝑚 and

2 · rank𝒪×
𝐾 = 4 ≤ 6 = [𝐾 : Q] · 1 ,

so (4.1.5) holds. Also

2 · rank𝒪×
𝑘 = 4 > 3 = [𝑘 : Q] · 1 ,

so (4.2.2) also holds. It follows that if the intersection in Definition 4.2.1 is infinite,

then (P1
𝒪𝑘

r {0, 1,∞},𝒪𝑘) is a strong base change obstruction to RoS Chabauty for

(P1
𝒪𝐾

r {0, 1,∞},𝒪𝐾). This is the case in typical examples.
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Example 4.2.4. If 𝒞/Q is a smooth projective curve of genus 𝑔 and 𝐾 is a number

field with

rank𝒥𝒞(Q) ≥ 𝑔,

but

rank𝒥𝒞(𝐾) ≤ [𝐾 : Q] · (𝑔 − 1),

then (𝒞,Q) is typically a strong base change obstruction to RoS Chabauty for (𝒞, 𝐾).

4.3 Full Prym obstructions

In [Dog19], Dogra shows that there is another geometric reason that the intersection

why RoS Chabauty sometimes fails to prove finiteness of rational points. In this

section, we give a heuristic-based explanation of the situation that [Dog19] describes.

Suppose that 𝒞 → 𝒟 is a finite morphism of sound clearance hole curves over

𝒪𝐾,𝑆. Suppose that the following running assumptions (for this section) hold:

(i) The intersection 𝑍 := (Res𝒪𝐾,𝑆/Z𝑆′ 𝒟)(Z𝑝)∩ (Res𝒪𝐾,𝑆/Z𝑆′ 𝒥𝒟)(Z𝑆′) is infinite. In

particular, this means that RoS Chabauty fails to prove that 𝒟(𝒪𝐾,𝑆) is finite.

(ii) rank𝒥𝒞(𝒪𝐾,𝑆)− rank𝒥𝒟(𝒪𝐾,𝑆) ≥ [𝐾 : Q] · (dim𝒥𝒞 − dim𝒥𝒟).

Under these conditions, we will now explain why the intersection

(Res𝒪𝐾,𝑆/Z𝑆′ 𝒞)(Z𝑝) ∩ (Res𝒪𝐾,𝑆/Z𝑆′ 𝒥𝒞)(Z𝑆′)

is likely to be infinite, so that RoS Chabauty will fail to prove that 𝒞(𝒪𝐾,𝑆) is finite.

Note that there are pullback and pushforward maps 𝑓 * : 𝒥𝒞 → 𝒥𝒟 and 𝑓* : 𝒥𝒟 →

𝒥𝒞. Let 𝒫 := ker(𝑓*) and let 𝐺 := coker(𝒥𝒞(𝒪𝐾,𝑆) → 𝒥𝒟(𝒪𝐾,𝑆)).

We have the exact sequence

0 → 𝒫(𝒪𝐾,𝑆) → 𝒥𝒞(𝒪𝐾,𝑆) → 𝒥𝒟(𝒪𝐾,𝑆) → 𝐺 → 0
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which we can rewrite as

0 → (Res𝒪𝐾,𝑆/Z𝑆′ 𝒫)(Z𝑆′) → (Res𝒪𝐾,𝑆/Z𝑆′ 𝒥𝒞)(Z𝑆′) → (Res𝒪𝐾,𝑆/Z𝑆′ 𝒥𝒟)(Z𝑆′) → 𝐺 → 0 .

Now imagine that the following hypotheses hold:

1. 𝐺 = {1}, i.e., 𝑓* : 𝒥𝒞(𝒪𝐾,𝑆) → 𝒥𝒟(𝒪𝐾,𝑆) is surjective,

2. (Res𝒪𝐾,𝑆/Z𝑆′ 𝒫)(Z𝑆′) is dense in (Res𝒪𝐾,𝑆/Z𝑆′ 𝒫)(Z𝑝),

3. 𝑓 : 𝒞(𝒪𝐾,𝑆 ⊗ Z𝑝) → 𝒟(𝒪𝐾,𝑆 ⊗ Z𝑝) is surjective.

From hypotheses 1 and 2, for each 𝑃 ∈ 𝑍 ⊂ (Res𝒪𝐾,𝑆/Z𝑆′ 𝒥𝒟)(Z𝑆′), the 𝑝-adic

closure (Res𝒪𝐾,𝑆/Z𝑆′ 𝒥𝒞)(Z𝑆′) would contain (𝑓*)
−1(𝑃 ).

𝑓−1(𝑍) ⊂ (Res𝒪𝐾,𝑆/Z𝑆′ 𝒞)(Z𝑝) ∩ (Res𝒪𝐾,𝑆/Z𝑆′ 𝒥𝒞)(Z𝑆′) .

Under hypothesis 3, 𝑓−1(𝑃 ) ⊂ Res𝒪𝐾,𝑆/Z𝑆′ (Z𝑝) is non-empty for each 𝑃 ∈ 𝑍, so

𝑓−1(𝑍) is infinite as well. Hence, these conditions would imply that (Res𝒪𝐾,𝑆/Z𝑆′ 𝒞)(Z𝑝)∩

(Res𝒪𝐾,𝑆/Z𝑆′ 𝒥𝒞)(Z𝑆′) is infinite.

We illustrate this situation with the further approximation 𝒥𝒞 ≈ 𝒥𝒟×𝒫 in Figure

4-1.

In practice, these hypotheses 1, 2, and 3 are unlikely to hold. However, as we now

discuss, each is likely to hold up to finite index/on an open subset of 𝑍 under running

assumptions (i) and (ii).

Since 𝑓*∘𝑓 * is the multiplication by deg(𝑓)map and 𝒥𝒟(𝒪𝐾,𝑆) is finitely generated,

𝐺 is a finite group, so 1 is true up to finite index.

For 2, note that

rank(Res𝒪𝐾,𝑆/Z𝑆′ 𝒫)(Z𝑆′) = rank𝒥𝒞(𝒪𝐾,𝑆)− rank𝒥𝒟(𝒪𝐾,𝑆)
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Figure 4-1: An approximate graphical illustration of a full Prym obstruction. In the
notation of this section, the curve downstairs is 𝑍 = (Res𝒥𝒟)(𝒪𝐾,𝑆) ∩ (Res𝒟)(Z𝑝).
Upstairs, (Res(𝒫 × 𝒥𝒟))(Z𝑝) contains a finite index subgroup of the preimage 𝜋−1(𝑍)
of the curve downstairs. The image of (Res 𝒞)(Z𝑝) intersects 𝜋−1(𝑍) in the curve
upstairs, and (𝜑 ∘ 𝑗)(Res 𝒞)(Z𝑝) ∩ (Res𝒫 × 𝒥𝒟)(𝒪𝐾,𝑆) contains this curve.
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and

dim(Res𝒪𝐾,𝑆/Z𝑆′ 𝒫) = [𝐾 : Q] · dim𝒫 = [𝐾 : Q] · (dim𝒥𝒞 − dim𝒥𝒟) .

Running assumption (ii) says that

rank(Res𝒪𝐾,𝑆/Z𝑆′ 𝒫)(Z𝑆′) ≥ dim(Res𝒪𝐾,𝑆/Z𝑆′ 𝒫),

so in generic situations, (Res𝒪𝐾,𝑆/Z𝑆′ 𝒫)(Z𝑆′) will be finite index in (Res𝒪𝐾,𝑆/Z𝑆′ 𝒫)(Z𝑝).

Hence, 2 is likely to hold up to finite index.

Finally, 3 is a ultimately a statement about some collection of polynomials having

roots over a local field with finite residue field. Suppose that 𝑃 ∈ 𝒞(𝒪𝐾,𝑆 ⊗ Z𝑝).

By the implicit function theorem, after a small 𝑝-adic perturbation, we may assume

that 𝑓 is étale at the Q𝑝 points given by 𝑃 . Then, by Krasner’s lemma, for any

𝑃 ∈ 𝒞(𝒪𝐾,𝑆 ⊗ Z𝑝), there is an open neighborhood 𝑈 of 𝑓(𝑃 ) ∈ 𝒟(𝒪𝐾,𝑆 ⊗ Z𝑝) such

that 𝑈 ⊂ 𝑓(𝒞(𝒪𝐾,𝑆 ⊗ Z𝑝)). In particular, if 𝒞(𝒪𝐾,𝑆 ⊗ Z𝑝) ̸= ∅ then 𝑓(𝒞(𝒪𝐾,𝑆 ⊗ Z𝑝))

contains a nonempty open subset of 𝒟(𝒪𝐾,𝑆 ⊗ Z𝑝).

Putting these together, under running assumptions (i) and (ii), we see that heuris-

tically,

(Res𝒪𝐾,𝑆/Z𝑆′ 𝒞)(Z𝑝) ∩ (Res𝒪𝐾,𝑆/Z𝑆′ 𝒥𝒞)(Z𝑆′)

is likely to be infinite whenever it is nonempty, even if hypotheses 1, 2, and 3 are

not satisfied on the nose. This seems especially likely in the case that 𝒞(𝒪𝐾,𝑆) is

nonempty, which is often the case when trying to apply variants of the Chabauty–

Coleman method in practice.

To capture situations where this sort of obstruction could exist, we make the

following definition:

Definition 4.3.1. A full Prym obstruction to RoS Chabauty for (𝒞,𝒪𝐾,𝑆) is a mor-

phism 𝒞 → 𝒟 to a sound clearance hole curve 𝒟/𝒪𝐾,𝑆 such that both

(i)

𝑗((Res𝒪𝐾,𝑆/Z𝑆′ 𝒟)(Z𝑝)) ∩ (Res𝒪𝐾,𝑆/Z𝑆′ 𝒥𝒟)(Z𝑆′)
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inside (Res𝒪𝐾,𝑆/Z𝑆′ 𝒥𝒟)(Z𝑝) is infinite and

(ii)

rank𝒥𝒞(𝒪𝐾,𝑆)− rank𝒥𝒟(𝒪𝐾,𝑆) ≥ [𝐾 : Q] · (dim𝒥𝒞 − dim𝒥𝒟) .

Example 4.3.2. Full Prym obstructions (that are not simultaneously base change

obstructions) do exist. Following [Dog19], take 𝑏 =
√︀

11/27 and 𝐾 = Q(𝑏), to be the

smooth projective genus 3 hyperelliptic curve 𝐶 over 𝐾 with affine model

𝑦2 = 𝑥8 +
2916 · 𝑏+ 484

297
𝑥6 +

−128304 · 𝑏+ 168112

8019
𝑥4

+
214057729 · 𝑏− 35529472

23181643
𝑥2 +

−10784721024 · 𝑏+ 874208708

64304361
.

One can compute that

rank𝒥𝐶(𝐾) = 4 < 6 = [𝐾 : Q] · dim𝒥𝐶 ,

so the RoS Chabauty inequality holds for 𝐶. One can also check that 𝐶 is not a base

change of any curve defined over Q, so 𝐶 does not have a base change obstruction.

On the other hand, 𝐶 covers the base change 𝐷𝐾 of the smooth, projective, genus

2 hyperelliptic curve 𝐷/Q with affine model

𝑦2 =

(︂
𝑥4 − 11

27

)︂(︂
𝑥2 − 27

11

)︂
.

We claim that 𝐶 → 𝐷𝐾 is a full Prym obstruction to RoS Chabuaty for 𝐶.

Now, 𝒥𝐷(Q) and 𝒥𝐷(𝐾) both have rank 2. In particular,

rank𝒥𝐷(Q) = 2 > 1 = dim𝒥𝐷 − 1 ,

so it is plausible that 𝐷 is a base change obstruction to RoS Chabauty for 𝐷𝐾 . With

a bit more work, one can show that this indeed the case. In particular, (i) of definition

4.3.1 is satisfied.

Moreover, the Prym variety of 𝐶 → 𝐷𝐾 is an elliptic curve 𝐸 defined over 𝐾.

71



A computation shows that rank𝐸(𝐾) = 2 and the 𝑝-adic closure 𝐸(𝐾) is finite-

index in (Res𝐾/Q 𝐸)(Q𝑝). Hence,

rank𝒥𝐶(𝐾)− rank𝒥𝐷(𝐾) = 2 ≥ 2 = [𝐾 : Q](dim𝒥𝐶 − dim𝒥𝐷) ,

so (ii) of definition 4.3.1 is also satisfied. Thus, there is a full Prym obstruction

to RoS Chabauty for 𝐶. The preceding discussion suggests that the intersection of

(Res𝐾/Q 𝐶)(Q𝑝) and 𝒥𝐶(𝐾) is likely to be infinite.

4.4 Simplifying regular differentials via base change

[Sik13] presents a sufficient condition to determine if the functions 𝐹𝜔 for 𝜔 ∈ Ω′

constructed in equation 4.1.6 have at most a single zero in a residue disc. The

condition that [Sik13] presents is very computational and seems difficult to strengthen

or to analyze in general. One difficulty is that the 𝐹𝜔, when expressed as power series

in local parameters on a disc, will typically have ‘few’ nonzero coefficients. For both

computation and abstract reasoning, it would be nicer to express the 𝐹𝜔 in terms of

sparse power series.

In this section, we describe a different approach, which allows us to do this. Our

plan is to expand the 𝐹𝜔 as power series in local parameters which are defined only

over a field extension of Q𝑝. This will be useful in Chapter 6.

Suppose that 𝑝 is unramified in 𝐾/Q. Let 𝐿P be a finite extension of Q𝑝 which is

a splitting field for 𝐾/Q𝑝. Then, #Hom(𝐾,𝐿P) = [𝐾 : Q].

Let 𝒪𝐿P
denote the valuation ring of 𝐿P. Then,

𝒪𝐾,𝑆 ⊗𝒪𝐿P
∼=
∏︁
𝜏

𝒪𝐿P
,

where 𝜏 ranges over Hom(𝒪𝐾,𝑆,𝒪𝐿P
) = Hom(𝐾,𝐿).

Now, suppose that 𝒵 is a quasi-projective 𝒪𝐾,𝑆-scheme. For 𝜏 as above, let 𝒵𝜏
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over 𝒪𝐿P
be the base change. Then,

(Res𝒪𝐾,𝑆/Z𝑆′ 𝒵)𝒪𝐿P

∼=
∏︁
𝜏

𝒵𝜏 .

The composition

𝒵(𝒪𝐾,𝑆) = (Res𝒪𝐾,𝑆/Z𝑆′ 𝒵)(Z𝑆′) →˓ (Res𝒪𝐾,𝑆/Z𝑆′ 𝒵)(𝒪𝐿P
) =

∏︁
𝜏

𝒵𝜏 (𝒪P)

is given by 𝑃 ↦→ (𝜏(𝑃 ))𝜏 .

Applying this for 𝒵 = 𝒞 and 𝒵 = 𝒥, we obtain a variant of the RoS Chabauty

diagram (4.1.1). We have

𝒞(𝒪𝐾,𝑆) 𝒱(Z𝑆′) 𝒱(𝒪𝐿P
)

∏︀
𝜏 𝒞𝜏 (𝒪P)

𝒥 (𝒪𝐾,𝑆) 𝒜(Z𝑆′) 𝒜(𝒪𝐿P
)

∏︀
𝜏 𝒥𝜏 (𝒪P).

(4.4.1)

The advantage of replacing the restrictions of scalars 𝒱 and 𝒜 by their base change

to 𝒪𝐿P
is that the spaces of regular 1-forms can be related directly to the 1-forms on

𝒥 and 𝒞. Specifically,

𝐻0(𝒜𝐿P
,Ω1)inv ∼= 𝐻0

(︃∏︁
𝜏

𝒥𝜏 ,Ω
1

)︃
inv

∼=
∏︁
𝜏

𝐻0(𝒥𝜏 ,Ω
1)inv ∼=

∏︁
𝜏

(𝐻0(𝒥 ,Ω1)inv ⊗𝜏
𝐾

𝐿P)

and similarly for𝐻0(𝒱𝐿P
,Ω1)inv. For 𝜔 = (𝜔𝜏 ) in𝐻0(𝒜𝐿P

,Ω1)inv =
∏︀

𝜏 (𝐻
0(𝒥 ,Ω1)inv⊗𝜏

𝐾

𝐿P) and 𝑃 = (𝑃𝜏 ) in 𝒜(𝒪𝐿P
) =

∏︀
𝜏 𝒥𝜏 (𝒪𝐿P

), we have

∫︁ 𝑃

0

𝜔 =
∑︁
𝜏

∫︁ 𝑃𝜏

0

𝜔𝜏 .

Similarly, 𝑝-adic integrals on 𝒱𝐿P
decompose as a sum of integrals on the mul-

tiplicands 𝒞𝜏 . If we choose local parameters 𝑡1, . . . , 𝑡𝑑 near 𝑃 = (𝑃𝜏 ) in 𝒱(𝒪𝐿P
) =∏︀

𝜏 𝒞𝜏 (𝒪𝐿P
) which are local parameters on the multiplicands, then for 𝑃1, 𝑃2 in the
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same (sufficiently small) residue disc, there exist functions 𝐹𝜔,𝑖 ∈ 𝐿P[[𝑡𝑖]] such that

∫︁ 𝑃2

𝑃1

𝑗*𝜔 =
𝑑∑︁

𝑖=1

𝐹𝜔,𝑖(𝑡𝑖(𝑃1))− 𝐹𝜔,𝑖(𝑡𝑖(𝑃2)) .

In particular,

𝑗−1(𝒥(𝒪𝐾,𝑆)) ⊂
∏︁
𝜏

𝒞𝜏 (𝒪𝐿P
)

is contained in the vanishing locus of a collection of power series of this form, which

we can compute explicitly by linear algebra analogous to that in Remark 3.2.2. Such

power series are said to be pure because the coefficients of any mixed terms are zero.

In particular, these power series are sparse.

This sparse representation comes at some cost – computations over 𝐿P are signif-

icantly more expensive than computations over Q𝑝 and the 𝒪𝐿P
-valued vanishing set

of our equations may be larger than the set computed when working over Z𝑝. This

latter cost can be mitigated by keeping track of the action of Gal(𝐿P/Q𝑝). We expect

that the savings allowed by the sparse power series will compensate for the former

cost in practice. And as we show in Chapter 6, this sparse representation is certainly

helpful when trying to reason about RoS Chabauty for many base changes of a curve

simultaneously.
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Chapter 5

RoS Chabauty and Genus 0 Descent:

General Theory

In this section, we combine Chabauty’s method and RoS Chabauty with the method

of descent, which reduces the problem of computing 𝒞(𝒪𝐾,𝑆) to computing 𝒟(𝒪𝐾,𝑆)

for a finite set of curves which map to 𝒞. We will be particularly interested in the

case where the 𝒞 and 𝒟 are all sound clearance hole curves such that the generic fiber

is a punctured genus zero curve, and the 𝒟 are 𝒢-torsors over 𝒞 for some finite Galois

group 𝒢. We prove that in most cases, classical Chabauty’s method together with Ga-

lois descent by genus 0 covers cannot succeed in proving that (P1
𝒪𝐾,𝑆

r{0, 1,∞})(𝒪𝐾,𝑆)

is finite. In contrast, so long as 𝐾 does not contain a CM subfield, RoS Chabauty

applied to a suitable set of genus zero covers of (P1
𝒪𝐾,𝑆

r {0, 1,∞})(𝒪𝐾,𝑆) has no

strong base change obstruction. For each cover in this set, there exists an 𝛼 ∈ 𝒪𝐾,𝑆

and and a morphism to 𝒟′
𝛼 := P1

𝒪𝐾,𝑆
r {𝑥 ∈ 𝐾 r𝐾 : 𝛼𝑥𝑞 − 1 = 0}. The 𝒟′

𝛼 for 𝛼 not

a 𝑞th power have no obstruction to RoS Chabauty coming solely from a combination

of strong base change and full Prym obstructions.

The review of generalized Jacobians of genus zero curves in Section 2.2.5 and the

review of descent in Section 2.3 (particularly the classification of genus 0 descent sets

in Section 2.3.3) may be helpful as background.
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5.1 Classical Chabauty and genus 0 descent.

Suppose that 𝒞 = 𝒳 rΓ is a sound, genus 0 clearance hole curve over 𝒪𝐾,𝑆. Taking 𝒥

to be the generalized Jacobian of 𝒞, the classical Chabauty inequality (3.2.6) becomes

rank𝒥 (𝒪𝐾,𝑆) ≤ (#Γ(𝐾)− 1)− 1 = #Γ(𝐾)− 2 . (5.1.1)

in this case. We use Lemma 2.2.15 to study when (5.1.1) holds (or fails to hold) for

𝒞.

As a warm up, note that the classical Chabauty inequality is satisfied for P1
𝒪𝐾,𝑆

r

{0, 1,∞} if and only if rank𝒪×
𝐾,𝑆 < 1, or equivalently 𝑆 = ∅ and either 𝐾 = Q or 𝐾

is an imaginary quadratic field.

More generally, we note the following:

Proposition 5.1.2. Let 𝐾 be a number field with absolute Galois group 𝐺 = Gal(𝐾/𝐾).

Suppose that 𝒞 = P1
𝒪𝐾,𝑆

r Γ for some horizontal divisor Γ is a sound clearance hole

curve. The classical Chabauty-Coleman inequality (5.1.1) for 𝒞 fails if any of the

following conditions hold:

1. 𝑟2(𝐾) ≥ 1 and 𝑟1(𝐾) + 𝑟2(𝐾) + #𝑆 ≥ 2,

2. 𝑟1(𝐾) ≥ 3 and 𝑟1(𝐾) + #𝑆 ≥ 4,

3. 𝑟1(𝐾) = 2 and 𝑟1(𝐾) + #𝑆 ≥ 4 and #(𝐺∖Γ(𝐾)) ≥ 2,

4. 𝑟1(𝐾) = 3 and Γ(𝐾) cannot be written as a disjoint union of 𝐺-orbits {𝑃𝑖, 𝑃
′
𝑖}

which remain 𝐺p orbits for each real place p. (E.g. The condition on Γ(𝐾) is

automatic if #Γ(𝐾) is odd.)

Of course, the classical Chabauty inequality (5.1.1) may also fail under many other

conditions, especially when 𝑆 is large. We sketch the proof.

Proof. We use Lemma 2.2.15 to express rank𝒥𝒞(𝒪𝐾,𝑆) in terms of the action of

Gal(𝐾/𝐾) on Γ(𝐾).

The statement follows quickly from three observations:
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1. If p ∈ Σ∞ is a complex place 𝐺p = {1}, so #(𝐺p∖Γ(𝐾))− 1 = #Γ(𝐾)− 1.

2. If p ∈ Σ∞ is a real place 𝐺p = Z/2Z, so #(𝐺p∖Γ(𝐾))− 1 ≥
⌈︁
#Γ(𝐾)

2

⌉︁
− 1, with

equality if and only if Γ(𝐾) decomposes into complex conjugate pairs over 𝐾p.

3. [#(𝐺∖Γ(𝐾))− 1] ≤ minp∈𝑆∪Σ∞ [#(𝐺p∖Γ(𝐾))− 1].

For example, if 𝑟2(𝐾) ≥ 1 and 𝑟1(𝐾) + 𝑟2(𝐾) + #𝑆 ≥ 2 , let ∞1 be an infinite

place and let p ̸= ∞1 be another place with #(𝐺p∖Γ(𝐾)) minimal. By Lemma 2.2.15,

rank𝒥𝒞(𝒪𝐾,𝑆) ≥ [#(𝐺∞1∖Γ(𝐾))− 1] + [#(𝐺p∖Γ(𝐾))− 1]− [#(𝐺∖Γ(𝐾))− 1]

≥ [#(𝐺∞1∖Γ(𝐾))− 1] + [#(𝐺p∖Γ(𝐾))− 1]− [#(𝐺p∖Γ(𝐾))− 1]

= #Γ(𝐾)− 1 .

The other cases are similar, hinging on the fact that the −[#(𝐺∖Γ(𝐾))− 1] term in

Lemma 2.2.15 can cancel at most the minimal positive term.

Corollary 5.1.3. Suppose that we are not in the following situations: (i) 𝐾 = Q,

(ii) 𝐾 a real quadratic field and #𝑆 ≤ 1, (iii) 𝐾 an imaginary quadratic or totally

real cubic field and #𝑆 = 0.

Then the classical Chabauty inequality (3.2.6) is not satisfied by any descent set

consisting of genus zero covers of P1
𝒪𝐾,𝑆

r{0, 1,∞}. Under Leopoldt’s Conjecture, this

implies that the combination of classical Chabauty and descent by genus zero covers

is insufficient to prove that

(P1
𝒪𝐾,𝑆

r {0, 1,∞})(𝒪𝐾,𝑆)

is finite.

Remark 5.1.4. If 𝐾 = Q the results of the next section show that (Z/𝑞Z)-descent

and classical Chabauty suffice to prove finiteness of (P1 r {0, 1,∞})(Z𝑆′) for any set

𝑆 ′ of primes. Of course, when 𝐾 is imaginary quadratic, classical Chabauty without

descent trivially suffices to prove that (P1 r {0, 1,∞})(𝒪𝐾) is finite.
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In the remaining cases, where 𝐾 is a totally real quadratic or cubic field, one

can check that (Z/𝑞Z)-descent and classical Chabauty is not sufficient to prove the

desired finiteness result. It may be possible to prove a similar finiteness result in these

cases using an iterated cyclic descent, or a descent-like procedure using covers which

are not torsors over the base curve, but this would require a more careful analysis.

5.2 RoS Chabauty and genus 0 descent.

For the genus 0 sound clearance hole curve 𝒞 = P1
𝒪𝐾,𝑆

r Γ, the condition for RoS

Chabauty to apply becomes

rank𝒥𝒞(𝒪𝐾,𝑆) ≤ 𝑑
(︀
#Γ(𝐾)− 2

)︀
. (5.2.1)

The main results of this section are the following two theorems.

Theorem 5.2.2. The punctured curve P1
𝒪𝐾,𝑆

r{0, 1,∞} has a descent set D consisting

of genus 0 sound clearance hole curves 𝒟 = P1
𝒪𝐾,𝑆

r Γ𝒟 (see Definition 2.1.1) such

that

I. the RoS Chabauty inequality

rank𝒥𝒟(𝒪𝐾,𝑆) ≤ 𝑑(#Γ𝒟(𝐾)− 2). (5.2.3)

holds for all 𝒟 ∈ D .

II. Under the further assumption that 𝐾 does not contain a CM field, D can be

chosen so that there is no base change obstruction to RoS Chabauty for (𝒟,𝒪𝐾,𝑆) for

any 𝒟 ∈ D .

Theorem 5.2.4. Let 𝐾 be a number field which does not contain a CM subfield and

let 𝑞 be a prime. Fix an 𝛼 ∈ 𝐾 which is not a 𝑞th power in 𝐾 and let

𝒞 := P1
𝒪𝐾,𝑆

r {𝑥 ∈ 𝐾 : 𝑥𝑞 − 𝛼 = 0} .
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For 𝑞 sufficiently large (depending only on 𝐾 and 𝑆), there is no full Prym obstruction

to RoS Chabauty for 𝒞. Moreover, if 𝒞 is the base change of some curve 𝒟, there is

no full Prym obstruction to RoS Chabauty for 𝒟.

Also, there is no base change obstruction to RoS Chabauty for 𝒞.

Remark 5.2.5. We saw in Section 5.1 that descent by genus 0 covers and classical

Chabauty are very unlikely to prove finiteness of (P1
𝒪𝐾,𝑆

r {0, 1,∞})(𝒪𝐾,𝑆), except

in a few special cases with 𝐾 of low degree.

In Remark 6.1.1, we will see that RoS Chabauty alone cannot prove finiteness of

(P1
𝒪𝐾,𝑆

r {0, 1,∞})(𝒪𝐾,𝑆) unless every subfield 𝑘 ⊆ 𝐾 has at most two real places.

In contrast, Theorems 5.2.2 and 5.2.4 suggest that descent and RoS Chabauty

together are likely to be sufficient to prove that (P1
𝒪𝐾,𝑆

r {0, 1,∞})(𝒪𝐾,𝑆) is finite,

so long as 𝐾 does not contain a CM subfield. Of course, there are many other ways

to prove that this set is finite; the real value of Theorems 5.2.2 and 5.2.4 is not to

prove this finiteness, but to provide evidence that Chabauty’s method could be used

to prove finiteness of integral points on a curve over a wide range of number fields.

Before we begin the proof, we note that if P1
𝒪𝐾,𝑆

rΓ1 and P1
𝒪𝐾,𝑆

rΓ2 are isomorphic,

then there is some fractional linear transformation 𝜑 : 𝑥 ↦→ 𝑎𝑥+𝑏
𝑐𝑥+𝑑

with 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐾

such that 𝜑(Γ1(𝐾)) = Γ2(𝐾). To determine when RoS Chabauty applies, we will need

to understand the number of real and complex embeddings of the fields generated by

the Galois orbits in Γ1 and Γ2, as well as the splitting of the primes in 𝑆 in these

fields.

The following lemmas will be helpful in the proof of Theorem 5.2.2 and Theo-

rem 5.2.4.

Lemma 5.2.6. Let 𝑞 be a prime. Suppose that 𝐾 is a number field with [𝐾(𝜁𝑞) :

𝐾] = 𝑞 − 1. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐾 be such that 𝑎𝑑− 𝑏𝑐 ̸= 0. Define a map 𝜑 : 𝐾 → 𝐾 by

𝜑(𝑥) = 𝑎𝑥+𝑏
𝑐𝑥+𝑑

. Suppose that 𝑘 ⊂ 𝐾 is a subfield such that [𝑘(𝜑(𝜁𝑞)) : 𝑘] = 𝑞 − 1. Let

𝑟1(𝑘) be the number of real embeddings of 𝑘.

a) If [𝐾 : Q] is odd, then,

𝑟1(𝑘(𝜑(𝜁𝑞))) ≤ 2𝑟1(𝑘) .
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b) If 𝐾 does not contain a CM subfield, then

𝑟1(𝑘(𝜑(𝜁𝑞))) ≤ [𝑘 : Q](𝑞 − 1)− (𝑞 − 3) .

For the proof, it will be convenient to have the following lemma.

Lemma 5.2.7. Suppose that 𝐾 is a number field and that 𝛾 is algebraic over 𝐾. Let

𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐾 be such that 𝑎𝑑 − 𝑏𝑐 ̸= 0. Define a map 𝜑 : 𝐾 → 𝐾 by 𝜑(𝑥) = 𝑎𝑥+𝑏
𝑐𝑥+𝑑

.

Suppose that 𝑘 ⊂ 𝐾 is a subfield such that [𝑘(𝜑(𝛾)) : 𝑘] = [𝐾(𝛾) : 𝐾].

a) Fix an embedding 𝜄 : 𝐾 → C and some 𝑟 ∈ R>0. Suppose that for all embeddings

𝜄′ : 𝐾(𝑎) →˓ C extending 𝜄, the image 𝜄′(𝛾) lies on the circle 𝑈𝑟 := {𝑥 ∈ C : |𝑥| =

𝑟}. If 𝜄(𝐾)∩𝑈𝑟 is finite, then there are at most 2 real embeddings 𝑘(𝜑𝜄(𝛾)) →˓ R

extending 𝜄|𝑘.

b) For each 𝜄 : 𝐾 → C fix some 𝑟𝜄 ∈ R>0. Suppose that for all embeddings

𝜄′ : 𝐾(𝑎) →˓ C extending 𝜄, the image 𝜄′(𝛾) lies on the circle 𝑈𝑟𝜄 := {𝑥 ∈

C : |𝑥| = 𝑟𝜄}. If 𝐾bad := {𝑥 ∈ 𝐾 : 𝜄(𝑥) ∈ 𝑈𝑟𝜄 for all 𝜄} is finite, then there

exists some some 𝜄 such that there are at most 2 real embeddings 𝑘(𝜑𝜄(𝛾)) →˓ R

extending 𝜄|𝑘.

Proof of Lemma 5.2.7. Let 𝜑𝜄 : P1(C) → P1(C) be the fractional linear transforma-

tion induced by 𝜑 and 𝜄.

(a) Suppose for the sake of contradiction that three of the conjugates of 𝜑𝜄(𝛾)

(extending 𝜄(𝐾)) lie in R. Since fractional linear transformations take circles/lines to

circles/lines, 𝜑𝜄(𝑈𝑟) = P1(R). For any 𝑥 ∈ Q, we have 𝜑−1
𝜄 (𝑥) ∈ 𝑈𝑟 ∩ 𝜄(𝐾). But 𝜑−1

𝜄

is injective and 𝑈𝑟 ∩ 𝜄(𝐾) is finite, so this is clearly impossible.

So, 𝜑𝜄(𝛾) is real in at most 2 of the embeddings 𝐾(𝜑𝜄(𝛾)) →˓ C extending 𝜄. Since

[𝑘(𝜑(𝛾)) : 𝑘] = [𝐾(𝛾) : 𝐾], there are at most 2 real embeddings of 𝑘(𝜑𝜄(𝛾)) →˓ C

extending 𝑘|𝜄.

(b) Suppose for the sake of contradiction that three of the conjugates of 𝜑𝜄(𝛾)

(extending 𝜄(𝐾)) lie in R in every embedding 𝜄 : 𝐾 →˓ C. Then, for any 𝑥 ∈ Q,
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we have 𝜑−1(𝑥) ∈ 𝐾bad. But 𝜑−1 is injective and 𝐾bad is finite, so this is clearly

impossible.

So, there is some 𝜄 such that 𝜑𝜄(𝛾) is real in at most 2 of the embeddings

𝐾(𝜑𝜄(𝛾)) →˓ C extending 𝜄. Since [𝑘(𝜑(𝛾)) : 𝑘] = [𝐾(𝛾) : 𝐾], there are at most

2 real embeddings of 𝑘(𝜑𝜄(𝛾)) →˓ C extending 𝑘|𝜄.

Proof of Lemma 5.2.6. Let 𝜄 : 𝐾 → C be a complex embedding of 𝐾. Let | · | be the

corresponding complex absolute value. Let 𝑈 := {𝑥 ∈ C : |𝑥| = 1}. Now, 𝜄 and 𝜑

induce a fractional linear transformation 𝜑𝜄 : P1(C) → P1(C). Any such map takes

lines and circles to lines and circles.

(a) Suppose [𝐾 : Q] is odd. We claim that

𝑈 ∩ 𝜄(𝐾) = {±1} .

Suppose for the sake of contradiction that 𝑥 ∈ 𝜄(𝐾) with |𝑥| = 1 and 𝑥 ̸= ±1, then

the complex conjugate 𝑥 = 𝑥−1 ∈ 𝜄(𝐾) as well. In particular, the minimal polynomial

of 𝑥 over 𝜄(𝐾) ∩ R is 𝑧2 − (𝑥+ 𝑥−1)𝑧 + 1. So, 𝑥 has degree 2 over 𝜄(𝐾) ∩ R, whence

𝐾 has even degree. But 𝐾 has odd degree, which gives the desired contradiction.

Then, Lemma 5.2.7 part (a) applies with 𝑟 = 1 for each embedding 𝜄. So,

𝑟1(𝑘(𝜑(𝜁𝑞))) ≤ 2𝑟1(𝑘) ,

as desired.

(b) Now we consider the case that 𝐾 does not contain a CM-subfield.

Suppose that 𝑥 ∈ 𝐾 (𝑥 ̸= ±1) lies on the unit circle in every complex embedding.

Then, Q(𝑥) is a degree 2, totally complex extension of the totally real field Q(𝑥+𝑥−1).

But then Q(𝑥) is a CM subfield of 𝐾, which is a contradiction.

Then, Lemma 5.2.7 part (b) applies with 𝑟𝜄 = 1 for all 𝜄. For some 𝜄, the are at

most 2 real places of 𝑘(𝜑𝜄(𝜁𝑞)) extending 𝜄|𝑘. For each other place, there are at most
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𝑞 − 1 real places extending 𝜄|𝑘. So,

𝑟1(𝑘(𝜑(𝜁𝑞))) ≤ (𝑟1(𝑘) + 𝑟2(𝑘)− 1)(𝑞 − 1) + 2 ,

≤ [𝐾 : Q](𝑞 − 1)− (𝑞 − 3) ,

as desired.

Lemma 5.2.8. Suppose that 𝐾 is a number field and 𝛼 ∈ 𝐾 with [𝐾( 𝑞
√
𝛼) : 𝐾] = 𝑞.

Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐾 be such that 𝑎𝑑− 𝑏𝑐 ̸= 0. Define a map 𝜑 : 𝐾 → 𝐾 by 𝜑(𝑥) = 𝑎𝑥+𝑏
𝑐𝑥+𝑑

.

Suppose that 𝑘 ⊂ 𝐾 is a subfield such that [𝑘(𝜑𝑀(𝛼)) : 𝑘] = 𝑞. Let 𝑟1(𝑘) be the

number of real embeddings of 𝑘.

1. If [𝐾 : Q] is odd, then,

𝑟1(𝑘(𝜑(
𝑞
√
𝛼))) ≤ 2𝑟1(𝑘) .

2. If 𝐾 does not contain a CM subfield, then

𝑟1(𝑘(𝜑(
𝑞
√
𝛼))) ≤ [𝑘 : Q]𝑞 − (𝑞 − 2) .

Proof of Lemma 5.2.8. The proof of Lemma 5.2.8, is very similar to the proof of

Lemma 5.2.6.

(a) Suppose [𝐾 : Q] is odd and fix 𝜄 : 𝐾 →˓ C. Set 𝑟𝜄 = 𝑞
√︀

|𝜄(𝛼)|. For any

embedding extending 𝜄, we have | 𝑞
√
𝛼| = 𝑟. If there is some 𝛽 ∈ 𝜄(𝐾) such that

|𝜄(𝛽)| = 𝑟, then |𝜄(𝛽𝑞/𝛼)| = 1. Since 𝛼 is not a 𝑞th power, we have 𝛽𝑞/𝛼 ̸= ±1. So,

the existence of such a 𝛽 implies the existence of an element on the unit circle in that

embedding. From part (a) of the proof of Lemma 5.2.6, we see that 𝛽𝑞/𝛼 has even

degree, which is a contradiction.

Then, part (a) of Lemma 5.2.7 implies that there are at most two real embeddings

of 𝑘(𝜑( 𝑞
√
𝛼)) extending 𝜄|𝑘. Since 𝜄 was arbitrary, we have

𝑟1(𝑘(𝜑(
𝑞
√
𝛼))) ≤ 2𝑟1(𝑘) .
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(b) If there were some 𝛽 such that |𝜄(𝛽)| = 𝑞
√︀

|𝜄(𝛼)| for all 𝜄, then 𝜄(𝛽𝑞/𝛼) would

lie on the unit circle in all embeddings 𝜄 : 𝐾 →˓ C. As in the proof of part (b) of the

proof of Lemma 5.2.6, this would imply that 𝐾 contains a CM field, so it cannot be

the case.

Apply part (b) of Lemma 5.2.7 with 𝑟𝜄 =
𝑞
√︀

|𝜄(𝛼)|. For some 𝜄, the are at most 2

real places of 𝑘(𝜑𝜄( 𝑞
√
𝛼)) extending 𝜄|𝑘. For each other place, there are at most 𝑞 − 1

real places extending 𝜄|𝑘. So,

𝑘(𝜑( 𝑞
√
𝛼)) ≤ (𝑟1(𝑘) + 𝑟2(𝑘)− 1)𝑞 + 2 ,

≤ [𝐾 : Q]𝑞 − (𝑞 − 2) ,

as desired.

Proof of Theorem 5.2.2. We construct an explicit set D consisting of covers of twists

of the 𝑞th power map for any sufficiently large prime 𝑞 /∈ 𝑆 ′. We determine how large

𝑞 needs to be later in the proof.

Choose a set 𝑈 of coset representatives for 𝒪×
𝐾,𝑆/𝒪

×𝑞
𝐾,𝑆 with 1 ∈ 𝑈 .

Let 𝒟𝑢 be the curve A1
𝒪𝐾,𝑆

r {𝑥(𝑥𝑞 − 𝑢−1) = 0}. If we take Γ𝑢 to be the divisor

(defined over 𝐾) given by

Γ𝑢 = {0,∞} ∪ {𝑥 ∈ 𝐾 : 𝑢𝑥𝑞 − 1 = 0} ,

then 𝒟𝑢 = P1
𝒪𝐾,𝑆

r Γ𝑢. The curve 𝒟𝑢 maps to P1
𝒪𝐾,𝑆

r {0, 1,∞} via

A1
𝒪𝐾,𝑆

r {𝑥(𝑥𝑞 − 𝑢−1) = 0} → P1
𝒪𝐾,𝑆

r {0, 1,∞}

𝑥 ↦→ 𝑢𝑥𝑞 .

Let D be the set {𝒟𝑢 : 𝑢 ∈ 𝑈}. For each 𝑢 ∈ 𝑈 , the image of 𝒟𝑢(𝒪𝐾,𝑆) is in

𝑢𝒪×𝑞
𝐾,𝑆∩(P1

𝒪𝐾,𝑆
r{0, 1,∞})(𝒪𝐾,𝑆). As a result, D is a descent set for P1

𝒪𝐾,𝑆
r{0, 1,∞}.

Let 𝒥𝑢 be the generalized Jacobian of 𝒟𝑢. For each 𝑢 ∈ 𝑈 , the generic fiber of 𝒟𝑢

is P1 with a reduced divisor of degree 𝑞 + 2 removed. Hence, dim𝒥𝑢 = 𝑞 + 1.
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Bounding rank𝒥𝑢 will require more work. We break into two cases based on

whether or not 𝑢 = 1.

Case 1: 𝑢 = 1

Part I: (𝒟1,𝒪𝐾,𝑆) satisfies the RoS Chabauty inequality.

Let 𝐺 be the absolute Galois group Gal(𝐾/𝐾) and let 𝐺p be the decomposition

group at the place p. We use Lemma 2.2.15 to compute the rank of 𝒥1 in terms of

the action of the 𝐺p on Γ1(𝐾).

By construction,

#(𝐺∖Γ1(𝐾)) = 4 .

Moreover,

#(𝐺p∖Γ1(𝐾)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑞 + 2 if p is a complex place of 𝐾 ,

3 + 𝑞−1
2

if p is a real place of 𝐾 ,

3 + #{primes P of 𝐾(𝜁𝑞) above p} if p is a finite place of 𝐾 .

While an exact formula for the number of primes of 𝐾(𝜁𝑞) above p is complicated,

we can bound it as follows when p does not lie over 𝑞.

Let 𝜅p be the residue field of 𝐾p. Let 𝑎p = [𝜅p(𝜁𝑞) : 𝜅p]. Then, 𝑎p is the order of

#𝜅p in (Z/𝑞Z)×, so

𝑎p ≥
⌈︂
ln(𝑞 − 1)

ln(#𝜅p)

⌉︂
.

Also,

#{primes P of 𝐾[𝜁𝑝] above p} =
𝑞 − 1

𝑎p
≤ 𝑞 − 1⌈︁

ln(𝑞−1)
ln(#𝜅p)

⌉︁ .
Thus, given any 𝜀 > 0, we may choose 𝑞 sufficiently large (depending on 𝜀,𝐾, and 𝑆)

so that

∑︁
p∈𝑆

#{primes P of 𝐾[𝜁𝑝] above p} ≤ 𝜀(𝑞 − 1) . (5.2.9)
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For such 𝑞, Lemma 2.2.15 implies that

rank𝒥1(𝒪𝐾,𝑆) ≤
(︂
𝑞 + 3

2

)︂
𝑟1(𝐾) + (𝑞 + 1)𝑟2(𝐾) + 2#𝑆 + 𝜀(𝑞 − 1)− 3

=

(︂
𝑟1(𝐾) + 2𝑟2(𝐾)

2
+ 𝜀

)︂
𝑞 +𝑂(1) ,

where the 𝑂(1) term depends only on 𝐾 and 𝑆. In comparison,

[𝐾 : Q](dim𝒥1 − 1) = (𝑟1(𝐾) + 2𝑟2(𝐾))𝑞 .

Hence, if 𝑞 is sufficiently large,

rank𝒥1(𝒪𝐾,𝑆) ≤ [𝐾 : Q](dim𝒥1 − 1) .

In other words, (𝒟1,𝒪𝐾,𝑆) satisfies the RoS Chabauty inequality (4.1.5).

Part II: (𝒟1,𝒪𝐾,𝑆) has no base change obstruction.

We claim that if 𝐾 does not contain a CM subfield then for sufficiently large 𝑞 the

pair (𝒟1,𝒪𝐾,𝑆) has no base change obstruction to RoS Chabauty.

Let 𝑘 be a subfield of 𝐾. Let 𝑆𝑘 be the set of primes lying under primes in 𝑆.

Let 𝐻 = Gal(𝑘/𝑘) be the absolute Galois group of 𝑘. Given a prime l of 𝒪𝑘, let 𝐻l

be the decomposition group at l. Note that if p is a prime of 𝒪𝐾 lying over l, we can

identify 𝐺p with a subgroup of 𝐻l.

Suppose that 𝒟′/𝒪𝑘,𝑆𝑘
is a curve with 𝒟′

𝒪𝐾,𝑆

∼= 𝒟1. We know that the generic

fiber 𝒟′
𝑘 of 𝒟′ is a punctured genus 0 curve. A priori, the projective closure of 𝒟′

𝑘

could be a twisted form of P1
𝑘. However, the set of punctures gives a reduced divisor,

which has degree 𝑞 + 2. Since this degree is odd, the projective closure of 𝒟′
𝑘 must

be P1
𝑘.

In particular, there is some 𝑘-rational divisor so that 𝒟′
𝑘
∼= P1

𝑘 r Γ𝒟′
𝑘
. (Note that

although there may be room to choose the integral structure of 𝒟′, we have that

rank𝒥𝒟′(𝒪𝑘,𝑆𝑘
) is independent of the choice.)
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Let 𝜑(𝑥) = 𝑎𝑥+𝑏
𝑐𝑥+𝑑

define the isomorphism (𝒟1)𝐾 ∼= (𝒟′)𝐾 . Then, Γ𝒟′
𝑘
(𝑘) = (𝜑({0,∞}∪

{𝑥 : 𝑥𝑞 − 1 = 0}).

Since 𝐾 does not contain a CM subfield, a slight generalization of (the proof of)

Lemma 5.2.6 implies that there is some embedding 𝜄 : 𝑘 →˓ C such that #(Γ𝒟′
𝑘
(𝑘) ∩

R) ≤ 4.

For the corresponding place l ∈ Σ𝑘,∞, consider the action of 𝐻l on Γ𝒟′
𝑘
(𝑘). Let 𝑀

be the number of 𝐻l orbits of size 1 and let 𝑁 be the number of 𝐻l orbits of size 2.

We have 𝑀 + 2𝑁 = 𝑞 + 2 and 𝑀 ≤ 4, so 𝑀 +𝑁 ≤ (𝑞 + 6)/2.

For all other infinite places of 𝑘, we use the trivial bound #(𝐻l∖Γ𝒟′(𝑘)) ≤

#Γ𝒟′(𝑘) = 𝑞 + 2. So,

∑︁
l∈Σ𝑘,∞

#(𝐻l∖Γ𝒟′(𝑘)) ≤ (𝑟1(𝑘) + 𝑟2(𝑘)− 1)(𝑞 + 2) +
𝑞 + 6

2

≤
(︂
[𝑘 : Q]− 1

2

)︂
𝑞 +𝑂(1) .

Since 𝐾 has finitely many subfields 𝑘, the 𝑂(1) term depends only on 𝐾.

For any place l of 𝑘 lying under a place p of 𝐾, we have

#(𝐻l∖Γ𝒟′(𝑘)) ≤ #(𝐺p∖Γ𝒟′(𝐾)) = #(𝐺p∖Γ1(𝐾)) .

Applying (5.2.9), and accounting for the 3 additional rational points {0, 1,∞} we

have

∑︁
l∈𝑆𝑘

#(𝐻l∖Γ𝒟′(𝑘)) ≤
∑︁
p∈𝑆

#(𝐺p∖Γ𝒟′(𝐾)) =
∑︁
p∈𝑆

#(𝐺p∖Γ1(𝐾)) ≤ 𝜀(𝑞 − 1) + 3#𝑆 .

By Lemma 2.2.15, we have

rank𝒥𝒟′(𝒪𝑘,𝑆𝑘
)

(︂
[𝑘 : Q]− 1

2
+ 𝜀

)︂
𝑞 +𝑂(1) .

Choosing 𝜀 = 1/4 and 𝑞 sufficiently large (independent of the choice of 𝑘 ⊂ 𝐾)
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we may arrange that

rank𝒥𝒟(𝒪𝑘,𝑆𝑘
) ≤ [𝑘 : Q] · 𝑞 = [𝑘 : Q](dim𝒥𝒟 − 1) .

Case 2: 𝑢 ̸∈ 𝒪×𝑞
𝐾,𝑆

Part I: (𝒟𝑢,𝒪𝐾,𝑆) satisfies the RoS Chabauty inequality.

The proof in this case is very similar to the previous case. There is a slight difference

in the treatment of the finite places.

#(𝐺p∖Γ𝑢(𝐾)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑞 + 2 if p is a complex place of 𝐾 ,

3 + 𝑞−1
2

if p is a real place of 𝐾 ,

2 + #{primes P of 𝐾[ 𝑞
√
𝑢] above p} if p is a finite place of 𝐾 .

With 𝑎p defined as in the previous case, for a finite place p of 𝐾 not lying over 𝑞,

#{primes P of 𝐾[ 𝑞
√
𝑢] above p} =

⎧⎪⎨⎪⎩1, if 𝑢 /∈ 𝜅×𝑞
p ,

1 + (𝑞 − 1)/𝑎p, otherwise .

For 𝜀 as in Part 1, Lemma 2.2.15 gives

rank𝒥𝑢(𝒪𝐾,𝑆) ≤
(︂
𝑞 + 3

2

)︂
𝑟1(𝐾) + (𝑞 + 1)𝑟2(𝐾) + 2#𝑆 + 𝜀(𝑞 − 1)− 2 .

Again, in comparison,

[𝐾 : Q](dim𝒥𝑢 − 1) = (𝑟1(𝐾) + 2𝑟2(𝐾))𝑞 .

Taking 𝑞 large enough, we have

rank𝒥𝑢(𝒪𝐾,𝑆) ≤ [𝐾 : Q](dim𝒥𝑢 − 1) ,

so that (𝒟𝑢,𝒪𝐾,𝑆) satisfies the RoS Chabauty inequality (4.1.5).
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Part II: (𝒟𝑢,𝒪𝐾,𝑆) has no base change obstruction.

The proof that 𝒟𝑢 has no base change obstruction so long as𝐾 does not contain a CM

subfield is essentially identical to the proof for 𝒟1, except that it a mild generalization

of Lemma 5.2.8 in place of the mild generalization of Lemma 5.2.6. Again, for any

𝒟′/𝒪𝑘,𝑆𝑘
with 𝒟′

𝒪𝐾,𝑆

∼= 𝒟𝑢, we find by Lemma 2.2.15 that

rank𝒥𝒟′(𝒪𝑘,𝑆𝑘
)

(︂
[𝑘 : Q]− 1

2
+ 𝜀

)︂
𝑞 +𝑂(1) . (5.2.10)

Choosing 𝜀 = 1/4 and 𝑞 sufficiently large we may arrange that

rank𝒥𝒟(𝒪𝑘,𝑆𝑘
) ≤ [𝑘 : Q] · 𝑞 = [𝑘 : Q](dim𝒥𝒟 − 1) .

Remark 5.2.11. Retain the notation of Theorem 5.2.2 and its proof. In contrast to

the situation where 𝐾 does not contain a CM field, if 𝐾 is a CM field, we will show

that there is a base change obstruction to RoS Chabauty for (𝒟1,𝒪𝐾,𝑆) for any large

𝑞, at least when #𝑆 ≥ 3.

Suppose 𝐾 is CM, with maximal totally real subfield 𝑘. Let 𝛼 ∈ 𝒪𝐾 be such that

𝐾 = 𝑘(𝛼). Let 𝛼 be the Galois conjugate of 𝛼 under the Gal(𝐾/𝑘) action. Then,

𝛼 is the complex conjugate of 𝛼 for every embedding 𝐾 →˓ C. Define the fractional

linear transformation:

𝑓 : P1 → P1 ,

𝑥 ↦→ 𝛼𝑥− 𝛼

𝑥− 1
.

If 𝑎 ∈ Cr R, then

𝑥 ↦→ 𝑎𝑥− 𝑎

𝑥− 1

maps {𝑧 ∈ C : |𝑧| = 1} to R ∪ {∞}. Applying this to 𝑎 = 𝛼 and 𝑥 = 𝜁𝑞 (under

any embedding 𝐾(𝜁𝑞) →˓ C) shows that 𝑓(𝜁𝑞) is totally real. Thus, the minimal

polynomial of 𝑓(𝜁𝑞) over 𝐾 has coefficients in 𝑘.
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Also, 𝑓(1) = ∞ and 𝑓({0,∞}) = {𝛼, 𝛼}, so Γ𝒟 := 𝑓({𝑥 : 𝑥𝑞 − 1 = 0} ∪ {0,∞})

is defined over 𝑘.

Moreover, for each infinite place l of 𝑘, we have

#(𝐻l∖Γ𝒟(𝑘)) = 𝑞 + 1 .

The set (𝐻∖Γ𝒟(𝑘)) consists of the orbits {∞}, {𝛼, 𝛼}, and at least one other orbit,

so #(𝐻∖Γ𝒟(𝑘)) ≥ 3. Thus, for any finite place l of 𝑘,

#(𝐻l∖Γ𝒟(𝑘)) ≥ #(𝐻∖Γ𝒟(𝑘)) ≥ 3 .

Set 𝒟 = P1
𝒪𝑘,𝑆𝑘

r Γ𝒟 and let 𝒥𝒟 be its Jacobian. When 𝑆𝑘 ̸= ∅, we can absorb the

#(𝐻∖Γ𝒟(𝑘)) − 1 term of Lemma 2.2.15 into one of the finite places to get implies

that

rank𝒥𝒟(𝒪𝑘,𝑆𝑘
) ≥ [𝑘 : Q]𝑞 + 2#𝑆𝑘 − 2

> [𝑘 : Q](dim𝒥𝒟 − 1) + 2#𝑆𝑘 − 3 .

In particular, if #𝑆𝐾 ≥ 3, then #𝑆𝑘 ≥ 2 so (𝒟,𝒪𝑘,𝑆𝑘
) is a base change obstruction

to RoS Chabauty for (𝒟1,𝒪𝐾,𝑆).

Of course, if 𝐾 is not CM, but contains a CM field, we may apply the same

argument to the CM subfield to construct a base change obstruction.

Before proving Theorem 5.2.4, we state and prove one more technical lemma,

which says roughly that full Prym obstructions to RoS Chabauty for a genus 0 sound

clearance hole curve 𝒞 over𝒪𝐾,𝑆 only occur when the map ‘forgets’ a puncture or when

the rank of the Jacobian is close to (more precisely, within approximately rank𝒪×
𝐾,𝑆

of) the bound from the RoS Chabauty inequality.

Lemma 5.2.12. Let 𝒞1 := P1 r Γ1 and let 𝒞2 := P1 r Γ2 be sound clearance hole

curves over 𝒪𝐾,𝑆. Let 𝒥1 be the generalized Jacobian of 𝒞1 and suppose that

rank𝒥1(𝒪𝐾,𝑆) + rankG𝑚(𝒪𝐾,𝑆) + 1 < [𝐾 : Q] ·#Γ1(𝐾) .
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a) Suppose that Γ2(𝐾) consists of a single Galois orbit and that we are given a

morphism 𝜙 : 𝒞1 → 𝒞2 such that the induced morphism 𝜑 : P1 → P1 maps

Γ1(𝐾) to Γ2(𝐾) surjectively. Then, 𝜙 is not a full Prym obstruction to RoS

Chabauty for 𝒞1.

b) Suppose that Γ1 consists of a single Galois orbit. Then, there is no full Prym

obstruction to RoS Chabauty for 𝒞1.

Proof. (a) Let 𝑛 = #(𝐺∖Γ1(𝐾)). Let 𝛿 = #Γ1(𝐾)/#Γ2(𝐾). Let 𝒥2 be the general-

ized Jacobian of 𝒞2. Then, adding rankG𝑚(𝒪𝐾,𝑆) = −1 +
∑︀

p∈𝑆∪Σ∞
1 to the formula

from Lemma 2.2.15 gives

rank𝒥1(𝒪𝐾,𝑆) + rankG𝑚(𝒪𝐾,𝑆) + 𝑛 =
∑︁

p∈𝑆∪Σ∞

#(𝐺p∖Γ1(𝐾)) . (5.2.13)

Similarly,

rank𝒥2(𝒪𝐾,𝑆) + rankG𝑚(𝒪𝐾,𝑆) + 1 =
∑︁

p∈𝑆∪Σ∞

#(𝐺p∖Γ2(𝐾)) .

Now, for each p ∈ 𝑆 ∪ Σ∞, we have #(𝐺p∖Γ1(𝐾)) ≤ 𝛿#(𝐺p∖Γ2(𝐾)), so

rank𝒥1(𝒪𝐾,𝑆)− rank𝒥2(𝒪𝐾,𝑆) ≤
𝛿 − 1

𝛿
(rank𝒥1(𝒪𝐾,𝑆) + rankG𝑚(𝒪𝐾,𝑆) + 1) .

On the other hand,

dim𝒥1 − dim𝒥2 = (#Γ1(𝐾)− 1)− (#Γ2(𝐾)− 1) =
𝛿 − 1

𝛿
#Γ1(𝐾) .

Combining (5.2.13) with the previous two sentences shows that

rank𝒥1(𝒪𝐾,𝑆)− rank𝒥2(𝒪𝐾,𝑆) < dim𝒥1 − dim𝒥2 .

Thus, 𝒞1 → 𝒞2 is not a large Prym obstruction.

Part (b) follows immediately from part (a), since if Γ1 consists of a single Galois

orbit, 𝜑(Γ1) must also consist of a single Galois orbit.
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Theorem 5.2.4 is essentially a corollary of Lemma 5.2.12 and the rank bounds

from the proof of Theorem 5.2.2.

Proof of Theorem 5.2.4. Suppose that 𝑘 is a subfield of 𝐾 and 𝒟 is a sound clearance

hole curve over 𝒪𝑘,𝑆𝑘
such that 𝒟𝒪𝐾,𝑆

∼= 𝒞. Since 𝒟 differs from the curves considered

in (5.2.10) only by a finite set of punctures, the ranks will be the same up to an 𝑂(1)

term (depending on 𝐾 and 𝑆, but not on 𝑞.) We get

rank𝒥𝒟(𝒪𝑘,𝑆𝑘
) + rankG𝑚(𝒪𝑘,𝑆𝑘

) + 1 ≤
(︂
[𝑘 : Q]− 1

2
+ 𝜀

)︂
· 𝑞 +𝑂(1) .

Taking 𝜀 = 1/4 and 𝑞 sufficiently large, this is strictly less that [𝑘 : Q] · 𝑞 = [𝑘 :

Q] ·#Γ𝒟(𝐾). Applying Lemma 5.2.12 completes the proof.
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Chapter 6

RoS Chabauty and P1 r {0, 1,∞}:

Computations

In this chapter, we study the application of restriction of scalars and Chabauty’s

method to compute solutions to the unit equation (without using descent). Most of

the section is an extended series of examples of RoS Chabauty for P1r{0, 1,∞}. The

final subsection uses a slight variant of this setup to prove that if 3 splits completely

in 𝐾 and 3 - [𝐾 : Q] then (P1 r {0, 1,∞})(𝒪𝐾) = ∅.

6.1 RoS Chabauty and P1 r {0, 1,∞}: Generalities

We make explicit the theory of RoS Chabauty from Sections 4.1 and 4.4 in the context

of P1r{0, 1,∞}. Our notation is as in Section 4.4. From here on, we drop subscripts

signifying the base ring to ease notation if we think it is unlikely to cause confusion.

Remark 6.1.1. If 𝒞 = P1
𝒪𝐾,𝑆

r {0, 1,∞} then 𝒥𝒞 ∼= G𝑚,𝒪𝐾,𝑆
× G𝑚,𝒪𝐾,𝑆

. Let 𝑟1 and

𝑟2 be the number of real and complex embeddings of 𝐾, so 𝑑 = 𝑟1 + 2𝑟2. We have

dim𝒥𝒞 = 2 and

rank𝒥 (𝒪𝐾,𝑆) = 2 rank𝒪×
𝐾,𝑆 = 2(𝑟1 + 𝑟2 +#𝑆 − 1) .
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In this case, the RoS Chabauty inequality (4.1.5) becomes:

2(𝑟1 + 𝑟2 +#𝑆 − 1) ≤ (𝑟1 + 2𝑟2)(2− 1) ,

or equivalently

𝑟1 + 2#𝑆 ≤ 2 .

Hence, (P1 r {0, 1,∞},𝒪𝐾,𝑆) satisfies the RoS Chabauty inequality if and only if one

of the following holds:

∙ 𝑟1 = 0 and #𝑆 ≤ 1,

∙ 𝑟1 = 1 and #𝑆 = 0,

∙ 𝑟1 = 2 and #𝑆 = 0.

If #𝑆 > 0, then (P1 r {0, 1,∞},Z𝑆′) violates the RoS Chabauty inequality and

therefore is a base change obstruction to RoS Chabauty for (P1 r {0, 1,∞},𝒪𝐾,𝑆).

As a result, we do not lose much generality if we restrict to the case 𝑆 = ∅. We will

do so for the rest of this section to ease notation.

Throughout, we fix the Abel-Jacobi map:

𝑗 : P1 r {0, 1,∞} →˓ G𝑚 ×G𝑚

𝑥 ↦→ (𝑥, 𝑥− 1) .

The outside of the diagram (4.4.1) becomes

(P1 r {0, 1,∞})(𝒪𝐾) (P1 r {0, 1,∞})(𝒪𝐿P
)𝑑

G𝑚(𝒪𝐾)×G𝑚(𝒪𝐾) G𝑚(𝒪𝐿P
)𝑑 ×G𝑚(𝒪𝐿P

)𝑑 .

(6.1.2)

Let 𝜎1, . . . , 𝜎𝑑 : 𝐾 → 𝐿P be the embeddings of 𝐾 into 𝐿P. The bottom horizontal

map in (6.1.2) is given by

(𝑥, 𝑦) ↦→ ((𝜎1(𝑥), . . . , 𝜎𝑑(𝑥)), (𝜎1(𝑦), . . . , 𝜎𝑑(𝑦))) ,

94



while the rightmost vertical map in (6.1.2) is given by

(𝑢1, . . . , 𝑢𝑑) ↦→ ((𝑢1, . . . , 𝑢𝑑), (𝑢1 − 1, . . . , 𝑢𝑑 − 1)) .

Let 𝑥1, . . . , 𝑥𝑑, 𝑦1, . . . , 𝑦𝑑 be the local coordinates on G𝑑
𝑚 ×G𝑑

𝑚. We have

𝐻0(G𝑑
𝑚 ×G𝑑

𝑚,Ω
1)inv = Span

{︂
𝑑𝑥1

𝑥1

, . . . ,
𝑑𝑥𝑑

𝑥𝑑

,
𝑑𝑦1
𝑦1

, . . . ,
𝑑𝑦𝑑
𝑦𝑑

}︂
.

In these coordinates, the 𝑝-adic integration theory has a particularly simple interpre-

tation: For 𝑖 ∈ {0, 1} set

𝑄𝑖 = ((𝑥
(𝑖)
1 , . . . , 𝑥

(𝑖)
𝑑 ), (𝑦

(𝑖)
1 , . . . , 𝑦

(𝑖)
𝑑 )) .

Let log denote the 𝑝-adic logarithm. Then,

∫︁ 𝑄1

𝑄0

𝑑∑︁
𝑗=1

(︂
𝑎𝑗
𝑑𝑥𝑗

𝑥𝑗

+ 𝑏𝑗
𝑑𝑦𝑗
𝑦𝑗

)︂
=

𝑑∑︁
𝑗=1

(︃
𝑎𝑗 log

𝑥
(1)
𝑗

𝑥
(0)
𝑗

+ 𝑏𝑗 log
𝑦
(1)
𝑗

𝑦
(0)
𝑗

)︃
.

Since we will only ever evaluate at points where the 𝑥(𝑖)
𝑗 and 𝑦

(𝑖)
𝑗 are units, we do not

need to specify the value of log 𝑝.

Now, we must gather information about the space of 𝑎𝑗 and 𝑏𝑗 such that for any

𝑄 = ((𝑥′
1, . . . , 𝑥

′
𝑑), (𝑦

′
1, . . . , 𝑦

′
𝑑)) ∈ G𝑚(𝒪𝐾)×G𝑚(𝒪𝐾) ⊂ G𝑚(𝒪𝐿P

)𝑑 ×G𝑚(𝒪𝐿P
)𝑑 ,

we have ∫︁ 𝑄

(1,1)

𝑑∑︁
𝑗=1

(︂
𝑎𝑗
𝑑𝑥𝑗

𝑥𝑗

+ 𝑏𝑗
𝑑𝑦𝑗
𝑦𝑗

)︂
=

𝑑∑︁
𝑗=1

(︀
𝑎𝑗 log 𝑥

′
𝑗 + 𝑏𝑗 log 𝑦

′
𝑗 = 0

)︀
.

Let A ⊂ 𝐿𝑑
P be the subspace of (𝑎1, . . . , 𝑎𝑑) such that

𝑑∑︁
𝑗=1

𝑎𝑗 log 𝜎𝑗(𝑥) = 0

for all 𝑥 ∈ G𝑚(𝒪𝐾). Let 𝑟 = rankG𝑚(𝒪𝐾). Then dimA ≥ 𝑑 − 𝑟 with equality if
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Leopoldt’s conjecture holds.

For any 𝑥 ∈ 𝒪𝐾 , we have
∏︀𝑑

𝑗=1 𝜎(𝑥) ∈ G𝑚(Z) = {±1}. In particular,

𝑑∑︁
𝑗=1

log 𝜎𝑗(𝑥) = 0 ,

so (1, . . . , 1) ∈ A regardless of 𝐾.

Let 𝑍 ⊆ G𝑚(𝒪𝐿P
)𝑑 ×G𝑚(𝒪𝐿P

)𝑑 be the common vanishing locus of the (at least)

2(𝑑− 𝑟)-dimensional vector space of functions:

ℱ :=

{︃
𝑑∑︁

𝑗=1

𝑎𝑗 log 𝑥𝑗 : (𝑎1, . . . , 𝑎𝑑) ∈ A

}︃
⊕

{︃
𝑑∑︁

𝑗=1

𝑎𝑗 log 𝑦𝑗 : (𝑎1, . . . , 𝑎𝑑) ∈ A

}︃
.

(6.1.3)

By construction, we have G𝑚(𝒪𝐾)×G𝑚(𝒪𝐾) ⊆ 𝑍.

Roughly speaking, our strategy for proving finiteness of (P1 r {0, 1,∞})(𝒪𝐾) is

to prove finiteness of the intersection

𝑍 ∩ (P1 r {0, 1,∞})𝑑(𝒪𝐿P
) ⊂ G𝑚(𝒪𝐿P

)𝑑 ×G𝑚(𝒪𝐿P
)𝑑 ,

which contains the image of (P1 r {0, 1,∞})(𝒪𝐾).

Since the image of (P1 r {0, 1,∞})𝑑(𝒪𝐿P
) is cut out by the equations

𝒢 := {𝑥𝑗 − 𝑦𝑗 = 1 : 𝑗 ∈ [1, . . . , 𝑑]} , (6.1.4)

this intersection is the common vanishing locus of at least 2𝑑 − 2𝑟 + 𝑑 functions on

the 2𝑑-dimensional G𝑚(𝒪𝐿P
)𝑑 × G𝑚(𝒪𝐿P

)𝑑. On sufficiently small closed compact

neighborhoods 𝑈 all of these functions can be written simultaneously as multivariate

𝑝-adic power series with 𝐿P-coefficients which converge on an open neighborhood of

𝑈 . In other words, the 𝑝-adic power series are overconvergent on 𝑈 . When 2𝑟+𝑑 ≤ 2𝑑,

we may hope that this intersection, the common vanishing locus of the functions in

ℱ and 𝒢, consists of a finite set of isolated points.
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In subsection 6.2.4, we need a slight variant of this high-level strategy. To explain

our approach, we first recall a few facts from the theory of rigid analytic geometry as

they apply to our setup.

Let C𝑝 be the completion of the algebraic closure of Q𝑝. Given any 𝑈 as above,

we may assume that there exist 𝑎1, . . . , 𝑎2𝑑 ∈ R such that 𝑈 is (isomorphic to)

{ (𝑡1, . . . , 𝑡2𝑑) ∈ 𝐿2𝑑
P : |𝑡𝑖| ≤ 𝑎𝑖 for all 𝑖 ∈ {1, . . . , 2𝑑} } .

Choosing linearly independent functions 𝐹1, . . . , 𝐹2𝑑−2𝑟 ∈ ℱ and 𝐺1, . . . , 𝐺𝑑 ∈ 𝒢 and

expressing them as overconvergent power series in the local coordinates for 𝑈 , we may

assume that they converge for all 𝑡𝑖 ∈ C𝑝 with |𝑡𝑖| < 𝑎𝑖 + 𝜖 on 𝑈 .

Let ‖(𝑢1, . . . , 𝑢2𝑑)‖ =
∑︀2𝑑

𝑖=1 𝑢𝑖 for 𝑢 ∈ Z2𝑑
≥0. After rescaling the local coordinates so

that all of the 𝑎𝑖 are 0, the set of common zeros C𝑝-valued zeros of these power series

in 𝒪C𝑝 is the MaxSpec of the affinoid algebra

𝐴 :=

{︃∑︁
𝑢

𝑏𝑢𝑡
𝑢 ∈ C𝑝[[𝑡1, . . . , 𝑡2𝑑]] : |𝑏𝑢| → ∞ as ‖𝑢‖ → ∞

}︃
/ ⟨𝐹1, . . . , 𝐹2𝑑−2𝑟, 𝐺1, . . . , 𝐺𝑑⟩ ,

This gives the common vanishing set of our power series (on each disc) the struc-

ture of an (affinoid) rigid analytic space. The ring 𝐴 is noetherian and irreducible

components of MaxSpec(𝐴) correspond to the finitely many minimal prime ideals of

𝐴. (See for instance [Con99], where this theory is developed in significantly greater

generality.)

Since any isolated common zeros of 𝐹1, . . . , 𝐹2𝑑−2𝑟, 𝐺1, . . . , 𝐺𝑑 are irreducible com-

ponents ofMaxSpec(𝐴), this implies that our power series have finitely many common

zeros which are isolated among their 𝒪C𝑝-valued common zeros.

In the next section, we will use tangent space computations to prove in several

particular cases that if 𝑃 ∈ 𝑈 is in the image of (P1 r {0, 1,∞})(𝒪𝐾), then 𝑃 is iso-

lated among 𝒪C𝑝-valued common zeros of the 𝐹𝑖 and 𝐺𝑖. It then follows immediately

from the discussion above that (P1 r {0, 1,∞})(𝒪𝐾) is finite.
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6.2 Finiteness of the Chabauty set: Examples

In the upcoming subsections, 𝐾 will be a quadratic field, mixed cubic field, or a

complex quartic field. In the final subsection, 𝐾 will be a mixed quartic field with a

totally real quadratic subfield. We always take 𝑝 to be a prime which is unramified

in 𝐾 and let 𝐿P be a finite extension of Q𝑝 which is a splitting field for 𝐾.

Following the strategy and notation of section 6.1, we will show that with finitely

many exceptions, for 𝑃 ∈ (P1r {0, 1,∞})(𝒪𝐾) the intersection of the tangent spaces

of the 𝐹1, . . . , 𝐹2𝑑−2𝑟, 𝐺1, . . . , 𝐺𝑑 at 𝑗(𝑃 ) is zero-dimensional. Hence, 𝑗(𝑃 ) is isolated

among 𝒪C𝑝-valued common zeros of the 𝐹𝑖 and 𝐺𝑖. By the discussion at the end of

section 6.1, this implies that (P1 r {0, 1,∞})(𝒪𝐾) is finite.

6.2.1 Real quadratic fields

Proposition 6.2.1. Let 𝐾 be a real quadratic field. Let

𝑗 : P1
𝒪𝐾

r {0, 1,∞} →˓ G𝑚,𝒪𝐾
×G𝑚,𝒪𝐾

𝑥 ↦→ (𝑥, 𝑥− 1) .

Also use 𝑗 to refer to the corresponding map on the restriction of scalars to Z. Then,

inside (Res𝒪𝐾/Z(G𝑚 ×G𝑚))(Z𝑝), the intersection

𝑗((Res𝒪𝐾/Z P1 r {0, 1,∞})(Z𝑝)) ∩ (Res𝒪𝐾/Z(G𝑚 ×G𝑚))(Z)

consists of finitely many isolated points. It follows that #(P1 r {0, 1,∞})(𝒪𝐾) < ∞.

Proof. Suppose that 𝐾 is a real quadratic field. In this case, rank𝒪×
𝐾 = 1 and

[𝐾 : Q] = 2, so A is 1-dimensional. Thus, A is spanned by (1, 1).
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We may take 𝐹1, 𝐹2, 𝐺1, 𝐺2 to be the equations

𝐹1 : log 𝑥1 + log 𝑥2 = 0 ,

𝐹2 : log 𝑦1 + log 𝑦2 = 0 ,

𝐺1 : 𝑥1 − 𝑦1 − 1 = 0 ,

𝐺2 : 𝑥2 − 𝑦2 − 1 = 0 .

After accounting for finitely many exceptions, we show that if 𝑥 ∈ G𝑚(𝒪𝐿P
) solves

these equations then the intersection of the tangent spaces of the zero sets of 𝐹1, 𝐹2, 𝐺1,

and 𝐺2 at 𝑥 is zero-dimensional. Equivalently, we will show that the matrix of deriva-

tives at 𝑥 = (𝑥1, 𝑥2, 𝑦1, 𝑦2)

𝑀𝑥 :=

⎛⎜⎜⎜⎜⎜⎜⎝
1
𝑥1

1
𝑥2

0 0

0 0 1
𝑦1

1
𝑦2

1 0 −1 0

0 1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠
has rank 4. After some elementary column/row operations and substituting 𝑦𝑗 =

𝑥𝑗 − 1, the condition rank𝑀𝑥 = 4 is equivalent to

rank

⎛⎝ 𝑥1 − 1 𝑥2 − 1

𝑥1 𝑥2

⎞⎠ = 2 .

This holds unless 𝑥1 = 𝑥2. In that case, log 𝑥1 = log 𝑥2 = 0, which only holds for

finitely many 𝑥1, 𝑥2 ∈ 𝒪𝐿P
. Hence, the set of points where the rank drops is finite.

On residue discs where 𝐹1, 𝐹2, 𝐺1 and𝐺2 can be expressed as overconvergent power

series, this implies that all common zeros are isolated (even among the 𝒪C𝑝-valued

zeros.)

In particular, the set of 𝒪𝐿P
-valued common zeros of 𝐹1, 𝐹2, 𝐺1, 𝐺2 is finite, which

proves the claim.

In fact, since the equations used in the proof of Proposition 6.2.1 do not depend
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on the choice of field, the proof is uniform in the field in the following sense. We have:

Corollary 6.2.2. ⋃︁
𝐾:[𝐾:Q]=2

(P1 r {0, 1,∞})(𝒪𝐾) < ∞.

In fact, the only solutions to the unit equation in real quadratic fields are

1 +
√
5

2
,
1−

√
5

2
,
3 +

√
5

2
,
−1−

√
5

2
,
3−

√
5

2
, and

−1 +
√
5

2
.

As an amusing digression, we note a quick geometric proof of this result.

Sym2(P1 r {0, 1,∞}) ∼= G𝑚 ×G𝑚 ,

{𝑥, 𝑦} ↦→ (𝑥𝑦, (𝑥− 1)(𝑦 − 1)) .

Since #(G𝑚 × G𝑚)(Z) = 4 and each element corresponds to an unordered pair of

solutions, there are exactly 8 solutions to the unit equation in quadratic fields.

In [DCW15], Dan-Cohen and Wewers develop an explicit version Kim’s of non-

abelian Chabauty to study points on (P1 r {0, 1,∞})(𝒪𝐾). Their computation cuts

out solutions using single-variable polylogarithms instead of sums of logarithms in

different variables. In the case where 𝐾 is a quadratic field, their method is also

uniform in the field, giving another proof that these are the only solutions to the unit

equation in quadratic fields where 11 splits.

6.2.2 Complex cubic fields

Proposition 6.2.3. Let 𝐾 be a complex cubic field. Let

𝑗 : P1
𝒪𝐾

r {0, 1,∞} →˓ G𝑚,𝒪𝐾
×G𝑚,𝒪𝐾

𝑥 ↦→ (𝑥, 𝑥− 1) .
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Also use 𝑗 to refer to the corresponding map on the restriction of scalars to Z. Then,

inside (Res𝒪𝐾/Z(G𝑚 ×G𝑚))(Z𝑝), the intersection

𝑗((Res𝒪𝐾/Z P1 r {0, 1,∞})(Z𝑝)) ∩ (Res𝒪𝐾/Z(G𝑚 ×G𝑚))(Z)

consists of finitely many isolated points. It follows that #(P1 r {0, 1,∞})(𝒪𝐾) < ∞.

Proof. Suppose now that 𝐾 is a complex cubic field. In this case, rank𝒪×
𝐾 = 1 and

[𝐾 : Q] = 3, so A is 2-dimensional. Thus, A is spanned by (1, 1, 1) and one other

vector, call it (𝑎1, 𝑎2, 𝑎3).

We wish to show that the any common zero in (𝒪×
𝐿P

)6 to the equations

𝐹1 : log 𝑥1 + log 𝑥2 + log 𝑥3 = 0 ,

𝐹2 : 𝑎1 log 𝑥1 + 𝑎2 log 𝑥2 + 𝑎3 log 𝑥3 = 0 ,

𝐹3 : log 𝑦1 + log 𝑦2 + log 𝑦3 = 0 ,

𝐹4 : 𝑎1 log 𝑦1 + 𝑎2 log 𝑦2 + 𝑎3 log 𝑦3 = 0 ,

𝐺1 : 𝑥1 − 𝑦1 − 1 = 0 ,

𝐺2 : 𝑥2 − 𝑦2 − 1 = 0 ,

𝐺3 : 𝑥3 − 𝑦3 − 1 = 0 ,

consists of points which are isolated inside the set of 𝒪C𝑝-valued solutions. Let 𝑋 be

the set 𝒪𝐿P
-valued common solutions of the 𝐹𝑖 and 𝐺𝑗.

To do this, we will check that with finitely many exceptions, the intersection of the

tangent spaces of the equations 𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐺1, 𝐺2, 𝐺3 at 𝑥 ∈ 𝑋 is zero-dimensional.

To do this, we will show that the matrix of derivatives at 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3) ∈
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𝑋, namely

𝑀𝑥 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑥1

1
𝑥2

1
𝑥3

0 0 0

𝑎1
𝑥1

𝑎2
𝑥2

𝑎3
𝑥3

0 0 0

0 0 0 1
𝑦1

1
𝑦2

1
𝑦3

0 0 0 𝑎1
𝑦1

𝑎1
𝑦2

𝑎1
𝑦3

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

has rank 6 except for a finite subset of 𝑋 consisting of isolated points. We may

assume without loss of generality that 𝑎1 = 0. Substituting 𝑦𝑗 = 𝑥𝑗 − 1 and applying

elementary row and column operations, the condition rank𝑀𝑥 ̸= 6 is equivalent to

rank

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1

𝑥1 𝑥2 𝑥3

0 𝑎2 𝑎3

0 𝑎2𝑥2 𝑎3𝑥3

⎞⎟⎟⎟⎟⎟⎟⎠ = 3 .

If this fails, then (0, 𝑎2, 𝑎3) is proportional to (0, 𝑎2𝑥2, 𝑎3𝑥3). If these vectors are

proportional, then either (i) 𝑎2 = 0, (ii) 𝑎3 = 0, or (iii) 𝑥2 = 𝑥3.

If we are in case (i), we may replace (0, 0, 𝑎3) with (−𝑎3,−𝑎3, 0) and (0, 0, 𝑎3𝑥3)

with (−𝑎3𝑥1,−𝑎3𝑥2, 0) and reindex the variables to reduce to case (iii). We can do the

same in case (ii). Making a similar transformation, we may assume that 𝑎2 + 𝑎3 ̸= 0.

So, when rank𝑀𝑥 ̸= 6, we must have 𝑥2 = 𝑥3 and 𝑦2 = 𝑦3.

When we plug this into the 𝐹𝑖 and 𝐺𝑖, we get (𝑎2+𝑎3) log 𝑥2 = 0. So, if rank𝑀𝑥 ̸=

6, then log 𝑥2 = 0. It follows that if rank𝑀𝑥 ̸= 6,

log 𝑥1 = log 𝑥2 = log 𝑥3 = log 𝑦1 = log 𝑦2 = log 𝑦3 = 0 .

The solutions to this equation are isolated in (𝒪×
C𝑝
)6, so we have shown that the

dimension of the the intersection of the tangent spaces of the 𝐹𝑖 and 𝐺𝑖 is zero-

dimensional for 𝑥 ∈ 𝑋 except perhaps at a finite set of isolated points. We have seen
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that the points of 𝑋 are all isolated among the C𝑝 solutions to the 𝐹𝑖 and 𝐺𝑖 in their

residue disc. Therefore, 𝑋 is finite. The conclusion follows immediately.

6.2.3 Totally complex quartic fields

Let 𝐾 be a totally complex quartic field. In this case, rank𝒪×
𝐾 = 1 and [𝐾 : Q] = 4,

so A is 3-dimensional. Thus, A is spanned by 𝑣1 := (1, 1, 1, 1) and two other vectors,

which we may assume have the form 𝑣2 := (0, 1, 𝑎3, 𝑎4) and 𝑣3 := (0, 0, 1, 𝑏4) after

possibly reindexing. Let 𝑣(𝑖) denote the 𝑖th component of the vector 𝑣.

As in the previous cases, for 𝑖 ∈ {1, 2, 3} and 𝑗 ∈ {1, 2, 3, 4} we can set

𝐹𝑖 : 𝑣
(1)
𝑖 log 𝑥1 + 𝑣

(2)
𝑖 log 𝑥2 + 𝑣

(3)
𝑖 log 𝑥3 + 𝑣

(4)
𝑖 log 𝑥4 ,

𝐹𝑖+3 : 𝑣
(1)
𝑖 log 𝑦1 + 𝑣

(2)
𝑖 log 𝑦2 + 𝑣

(3)
𝑖 log 𝑦3 + 𝑣

(4)
𝑖 log 𝑦4 ,

𝐺𝑗 : 𝑥𝑗 − 𝑦𝑗 − 1 = 0 .

Let 𝑋 be the set of solutions to the 𝐹𝑖 and 𝐺𝑗 in (𝒪×
𝐿P

)8. As in previous cases,

we claim that each 𝑥 ∈ 𝑋 is isolated among the 𝒪C𝑝-valued solutions to the 𝐹𝑖 and

𝐺𝑗 in any residue disc about 𝑥.

We check that at 𝑥 ∈ 𝑋, the intersection of the tangent spaces of the 𝐹𝑖 and 𝐺𝑗 is

zero-dimensional except possibly on a finite subset of 𝑋 consisting of isolated points.

This is equivalent to checking that the matrix

𝑀𝑥 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

𝑥1 𝑥2 𝑥3 𝑥4

0 1 𝑎3 𝑎4

0 𝑥2 𝑎3𝑥3 𝑎4𝑥4

0 0 1 𝑏4

0 0 𝑥3 𝑏4𝑥4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
has rank 4. If this fails, then either (i) 𝑥3 = 𝑥4 or (ii) 𝑏4 = 0. If 𝑥3 = 𝑥4 and
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rank𝑀𝑥 < 4, we must have

rank

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1

𝑥1 𝑥2 𝑥4

0 1 (𝑎3 + 𝑎4)/2

0 𝑥2 𝑥4(𝑎3 + 𝑎4)/2

⎞⎟⎟⎟⎟⎟⎟⎠ < 3 .

If 𝑏4 = 0 and rank𝑀𝑥 < 4, we must have

rank

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1

𝑥1 𝑥2 𝑥4

0 1 𝑎4

0 𝑥2 𝑎4𝑥4

⎞⎟⎟⎟⎟⎟⎟⎠ < 3 .

In both cases, the proof that the rank drops at points 𝑥 in a subset of 𝑋 consisting

of isolated points is essentially the same as in the cubic field case, so we omit it. We

conclude:

Proposition 6.2.4. If 𝐾 is a totally complex quartic field, then the intersection

(P1 r {0, 1,∞})(𝒪𝐿P
)𝑑 ∩G𝑚(𝒪𝐾)×G𝑚(𝒪𝐾) ⊂ G𝑚(𝒪𝐿P

)𝑑 ×G𝑚(𝒪𝐿P
)𝑑

consists of finitely many isolated points. Thus,

#(P1 r {0, 1,∞})(𝒪𝐾) < ∞

6.2.4 Mixed quartic fields with a totally real subfield

Suppose now that 𝐾 is a mixed quartic field, i.e. that 𝑟1(𝐾) = 2 and 𝑟2(𝐾) = 1. In

this case, rank𝒪×
𝐾 = 2 and [𝐾 : Q] = 4, so A is 2-dimensional. Thus, A is spanned

by (1, 1, 1, 1) and one other vector, call it (𝑎1, 𝑎2, 𝑎3, 𝑎4).

We claim:

Proposition 6.2.5. If 𝐾 is a mixed quartic field with a totally real quadratic sub-
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field, then for any 𝑝, the image 𝑗((P1r {0, 1,∞})(𝒪𝐾)) in G𝑚(𝒪𝐿P
)𝑑×G𝑚(𝒪𝐿P

)𝑑 is

contained in the (finite) subset of 𝒪×
𝐿P
-valued common solutions to the equations

𝐹1 : log 𝑥1 + log 𝑥2 + log 𝑥3 + log 𝑥4 = 0 ,

𝐹2 : 𝑎1 log 𝑥1 + 𝑎2 log 𝑥2 + 𝑎3 log 𝑥3 + 𝑎4 log 𝑥4 = 0 ,

𝐹3 : log 𝑦1 + log 𝑦2 + log 𝑦3 + log 𝑦4 = 0 ,

𝐹4 : 𝑎1 log 𝑦1 + 𝑎2 log 𝑦2 + 𝑎3 log 𝑦3 + 𝑎4 log 𝑦4 = 0 ,

𝐺𝑗 : 𝑥𝑗 − 𝑦𝑗 − 1 = 0 for 𝑗 ∈ {1, 2, 3, 4} ,

which are isolated among the 𝒪×
C𝑝
-valued common solutions.

In particular,

#(P1 r {0, 1,∞})(𝒪𝐾) < ∞ .

Let 𝑘 be the totally real subfield of𝐾. The field 𝑘 has two embeddings 𝜏1, 𝜏2 →˓ 𝐿P.

Say that 𝜎1 and 𝜎2 extend 𝜏1 and that 𝜎3 and 𝜎4 extend 𝜏2.

In our chosen coordinates, we can identify
(︀
Res𝒪𝑘/ZG𝑚

)︀
𝐿P

inside of
(︀
Res𝒪𝑘/ZG𝑚

)︀
𝐿P

as the space 𝑥1 = 𝑥2, 𝑥3 = 𝑥4.

If we restrict 𝐹1 and 𝐹2 to this subspace, then they must vanish on the points

corresponding to elements of 𝒪×
𝑘 . Taking parameters 𝑥1 and 𝑥3, the space of functions

of the form 𝑏1 log 𝑥1 + 𝑏3 log 𝑥3 on

(︀
Res𝒪𝑘/ZG𝑚

)︀
𝐿P

(𝐿P)

which vanish on the image of G𝑚(𝒪𝑘) is one-dimensional vector space spanned by

log 𝑥1 + log 𝑥3. This implies that 𝑎1 + 𝑎2 = 𝑎3 + 𝑎4. So, we may assume that

𝑎1 = 0, 𝑎2 = 1, 𝑎3 = 𝑏, 𝑎4 = 1− 𝑏 .

Substituting for the 𝑦𝑖 using the 𝐺𝑖, if we followed the pattern from the previous

subsections we would now show that the set 𝑋 ⊂ (𝒪×
𝐿P

∩ (𝒪×
𝐿P

− 1))4 of common
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solutions of the equations

log 𝑥1 + log 𝑥2 + log 𝑥3 + log 𝑥4 = 0 ,

log 𝑥2 + 𝑏 log 𝑥3 + (1− 𝑏) log 𝑥4 = 0 ,

log(1− 𝑥1) + log(1− 𝑥2) + log(1− 𝑥3) + log(1− 𝑥4) = 0 ,

log(1− 𝑥2) + 𝑏 log(1− 𝑥3) + (1− 𝑏) log(1− 𝑥4) = 0 .

consists of isolated points inside the𝒪C𝑝-valued solutions. Instead, we will show that if

𝑥 ∈ 𝑋 is not an isolated inside the𝒪C𝑝-valued solutions then 𝑥 /∈ (P1
𝒪𝐾

r {0, 1,∞})(𝒪𝐾).

For 𝑥 = (𝑥1, . . . , 𝑥4) ∈ 𝑋, let

𝑀𝑥 :=

⎛⎜⎜⎜⎜⎜⎜⎝
1
𝑥1

1
𝑥2

1
𝑥3

1
𝑥4

0 1
𝑥2

𝑏
𝑥3

1−𝑏
𝑥4

1
𝑥1−1

1
𝑥2−1

1
𝑥3−1

1
𝑥4−1

0 1
𝑥2−1

𝑏
𝑥3−1

1−𝑏
𝑥4−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

If rank(𝑀𝑥) < 4, then

det

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

𝑥1 𝑥2 𝑥3 𝑥4

0 1 𝑏 1− 𝑏

0 𝑥2 𝑏𝑥3 (1− 𝑏)𝑥4

⎞⎟⎟⎟⎟⎟⎟⎠ = 0 .

So, rank(𝑀𝑥) < 4 if and only if

(𝑥1 − 𝑥3)(𝑥2 − 𝑥4)

(𝑥2 − 𝑥3)(𝑥1 − 𝑥4)
=

(0− 𝑏)(1− (1− 𝑏))

(1− 𝑏)(0− (1− 𝑏))
=

𝑏2

(1− 𝑏)2
.

In particular, if some point 𝑥 ∈ (P1r{0, 1,∞})(𝒪𝐾) ⊂ 𝑋 is not isolated then 𝑏 must

be algebraic.

We will prove by contradiction that 𝑏 cannot be algebraic. The key tool is a 𝑝-adic

analogue due to Brumer [Bru67] of Baker’s Theorem on the linear independence of

logarithms of algebraic numbers.
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Theorem 6.2.6 (Brumer, [Bru67]). Let 𝛼1, . . . , 𝛼𝑛 be elements of the completion of

the algebraic closure of Q𝑝 which are algebraic over the rationals Q and whose 𝑝-

adic logarithms are linearly independent over Q. These logarithms are then linearly

independent over the algebraic closure Q of Q in Q𝑝.

Choose generators 𝑢1, 𝑢2 for a finite index subgroup of 𝒪×
𝐾 with 𝑢1 ∈ 𝒪×

𝑘 .

If 𝑏 is algebraic, the contrapositive of Brumer’s theorem implies that there are

integers 𝑐′2, 𝑐
′
3, 𝑐

′
4 ∈ Z, not all zero, such that

𝑐′2 log 𝜎2(𝑢2) + 𝑐′3 log 𝜎3(𝑢2) + 𝑐′4 log 𝜎4(𝑢2) = 0 ,

or equivalently that there are 𝑐2, 𝑐3, 𝑐4 ∈ Z, not all zero, such that

𝜎2(𝑢2)
𝑐2𝜎3(𝑢2)

𝑐3𝜎4(𝑢2)
𝑐4 = 1 .

Since 𝑘 is a quadratic field, 𝜏1(𝑘) = 𝜏2(𝑘) ⊂ 𝐿P as subsets of 𝐿P. Moreover, since 𝐾 is

a quadratic extension of 𝑘, we have 𝜎1(𝐾) = 𝜎2(𝐾) ⊂ 𝐿P and 𝜎3(𝐾) = 𝜎4(𝐾) ⊂ 𝐿P

as subsets of 𝐿P. On the other hand, 𝜎2(𝐾) ∩ 𝜎3(𝐾) = 𝜏1(𝑘) as subsets of 𝐿P.

Then, if 𝜎2(𝑢2)
𝑐2𝜎3(𝑢2)

𝑐3𝜎4(𝑢2)
𝑐4 = 1, we must have 𝜎2(𝑢2)

𝑐2 ∈ 𝜏1(𝑘) ⊂ 𝐿P. Hence,

there are nonzero 𝑐, 𝑑 ∈ Z such that 𝜎2(𝑢2)
𝑐·𝑐2 = 𝜎2(𝑢1)

𝑑. But this is only possible

if 𝑐2 = 0, since 𝑢1 and 𝑢2 generate a rank 2 group and are therefore multiplicatively

independent.

Hence, we have

𝜎3(𝑢2)
𝑐3𝜎4(𝑢2)

𝑐4 = 1 .

By the same argument applied to 𝑢1𝑢2 in place of 𝑢2, there are non-zero 𝑑3, 𝑑4 ∈ Z

such that

𝜎3(𝑢2𝑢1)
𝑑3𝜎4(𝑢2𝑢1)

𝑑4 = 1 . (6.2.7)
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So, we have

𝜎3(𝑢2)
𝑐3𝑑3𝜎4(𝑢2)

𝑐4𝑑3 = 1 ,

𝜎3(𝑢2𝑢1)
𝑐3𝑑3𝜎4(𝑢2𝑢1)

𝑐3𝑑4 = 1 .

This implies that 𝜎4(𝑢2)
𝑐4𝑑3−𝑐3𝑑4 = 𝜎3(𝑢1)

𝑐3𝑑3𝜎4(𝑢1)
𝑐3𝑑4 ∈ 𝜏2(𝑘). So, 𝑐4𝑑3 = 𝑐3𝑑4.

Then,

(𝜎3(𝑢1)
𝑑3𝜎4(𝑢1)

𝑑4)𝑐3 = 1 ,

so 𝜎3(𝑢1)
𝑑3𝜎4(𝑢1)

𝑑4 = 𝜏2(𝑢1)
𝑑3+𝑑4 is a root of unity. But if 𝑢𝑑3+𝑑4

1 is a root of unity,

𝑑3 = −𝑑4, since 𝑢1 generates the free part of 𝒪𝑘.

Then, 6.2.7 becomes 𝜎3(𝑢2)
𝑑3 = 𝜎4(𝑢2)

𝑑3 , which implies that 𝜎3(𝑢2)
𝑑3 ∈ 𝜏2(𝑘).

Since 𝑑3 and 𝑑4 are non-zero and 𝑢2 /∈ 𝑘, this is a contradiction. This proves that 𝑏

cannot be algebraic.

As a consequence, if some point 𝑥 ∈ 𝑋 is not isolated in the 𝒪C𝑝 solutions to our

equations on its residue disc, then 𝑥 /∈ (P1 r {0, 1,∞})(𝒪𝐾).

This completes the proof.

6.3 Fields where 3 splits completely

Theorem 6.3.1. Suppose that [𝐾 : Q] is not divisible by 3 and that 3 splits completely

in 𝐾. Then there is no pair 𝑥, 𝑦 ∈ 𝒪×
𝐾 such that 𝑥+ 𝑦 = 1. Equivalently,

(P1 r {0, 1,∞})(𝒪𝐾) = ∅.

Remark 6.3.2. Before we begin the proof, we note that the corresponding result for

2 is trivial. In fact, if there is any prime p above 2 such that 𝐾p is a totally ramified

extension of Z2 and p /∈ 𝑆 then there are no 𝑥, 𝑦 ∈ 𝒪×
𝐾,𝑆 such that 𝑥+ 𝑦 = 1. In that

setup, the proof is very short; there is a local obstruction at p. Solutions to the unit

equation cannot be congruent to 0 or 1 modulo p. On the other hand, if 𝐾p is totally

ramified over Z2, then every element of 𝒪𝐾,𝑆 is either congruent to 0 or 1 modulo p.
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Proof. Although it is disguised in our argument, the main idea of the proof is to use

a variant of Chabauty’s method to prove that for any unit 𝑢 ∈ 𝒪×
𝐾 , the intersection

(Res𝒪𝐾/Z P1 r {0, 1,∞})(Z3) ∩ {𝑢𝑛 : 𝑛 ∈ Z} × 𝒪×
𝐾

inside (Res𝒪𝐾/Z(G𝑚 ×G𝑚))(Z3) is empty.

Suppose that 3 splits completely in 𝐾 and choose any 𝑢 ∈ 𝒪×
𝐾 . The splitting

gives 𝑑 different maps 𝒪𝐾 → Z3. Let 𝑢1, . . . , 𝑢𝑑 be the images of 𝑢 in Z3 under these

maps. Since 𝑢 is a unit,

𝑑∏︁
𝑖=1

𝑢𝑖 = Nm𝐾/Q 𝑢 ∈ Z× = {±1} .

Now, suppose further that −𝑢 is a solution to the unit equation, so that there

exists some 𝑣 ∈ 𝒪×
𝐾 with −𝑢 − 𝑣 = 1. Since 𝑢 and 𝑣 are units, we must have

𝑢𝑖 ∈ 1 + 3Z3 for all 𝑖 ∈ {1, . . . , 𝑑}. Moreover, we have

𝑑∏︁
𝑖=1

(1 + 𝑢𝑖) = Nm𝐾/Q −𝑣 = (−1)𝑑 .

In particular, this says that 𝑛 = 1 is a solution to the 𝑝-adic analytic equation

𝑓(𝑛) := (1 + 𝑢𝑛
1 ) · · · (1 + 𝑢𝑛

𝑑)− (−1)𝑑 = 0 .

Now,
∏︀𝑑

𝑖=1 𝑢𝑖 = 1 by the norm equation, so

𝑓(−𝑛) =
𝑑∏︁

𝑖=1

(1 + 𝑢−𝑛
𝑖 )− (−1)𝑑

=
𝑑∏︁

𝑖=1

𝑢−𝑛
𝑖

𝑑∏︁
𝑖=1

(1 + 𝑢𝑛
𝑖 )− (−1)𝑑

=
𝑑∏︁

𝑖=1

(1 + 𝑢𝑛
𝑖 )− (−1)𝑑

= 𝑓(𝑛) ,
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so 𝑓 is an even function. In particular, if we expand 𝑓 as a 𝑝-adic power series, only

even-degree terms will have non-zero coefficients. Now, we can rewrite 𝑓 as

𝑓(𝑛) = −(−1)𝑑 +
𝑑∏︁

𝑖=1

(1 + exp(𝑛 log 𝑢𝑖)), .

Since log 𝑢𝑖 has 3-adic valuation ≥ 1 and exp converges so long as the 3-adic valuation

of (𝑛 log 𝑢𝑖) is > 1/2, this power series converges on an open neighborhood of 𝒪C3 ⊂

C3.

Expanding 𝑓 as a power series,

𝑓(𝑛) = −(−1)𝑑 +
𝑑∏︁

𝑖=1

(2 + 𝑛 log 𝑢𝑖 +
𝑛2

2
(log 𝑢𝑖)

2 +
𝑛3

3!
(log 𝑢𝑖)

3 + · · · ) .

So, writing 𝑓(𝑛) =
∑︀∞

𝑗=0 𝑎𝑛𝑛
𝑗 and using the identity

∑︀𝑑
𝑖=1 log 𝑢𝑖 = 0 gives

𝑎0 = 2𝑑 − (−1)𝑑 ,

𝑎1 = 0 ,

𝑎2 = 2𝑑−3

𝑑∑︁
𝑖=1

(log 𝑢𝑖)
2 ,

𝑎3 = 0 ,

𝑣3(𝑎𝑗) ≥ 3 for all 𝑗 ≥ 4 .

We have 𝑣(𝑎2) ≥ 2, so 𝑓(𝑛) has no solution in Z3 when 𝑎0 is not divisible by 9. But

𝑎0 is divisible by 9 if and only if 𝑑 is divisible by 3, which completes the proof.

Remark 6.3.3. Unfortunately, it seems unlikely that we can do any better in general

by these methods.

Consider the number field 𝐾 := Q[𝑧]/(𝑧3 + 3𝑧2 + 2𝑧 + 3). It is easy to check that

3 splits completely in 𝐾. A computation in Magma shows that 𝒪×
𝐾 is generated by

𝑧2 + 1 and −1.

Set 𝑢 = −(𝑧2 + 1)2 = −(9𝑧2 + 3𝑧 + 10) = −3(3𝑧2 + 𝑧 + 3)− 1.
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Computing in Magma gives

log(𝑢1) = 0 · 31 + 2 · 32 +𝑂(33) ,

log(𝑢2) = 2 · 31 + 2 · 32 +𝑂(33) ,

log(𝑢3) = 1 · 31 + 1 · 32 +𝑂(33) .

In this case, it is clear that 𝑣3(log(𝑢1)
2+log(𝑢2)

2+log(𝑢3)
2) = 2 exactly. Write 𝑓(𝑛) =∑︀∞

𝑗=0 𝑎𝑛𝑛
𝑗 as in the proof of theorem 6.3.1. Then, we see that 𝑣3(𝑎0) = 𝑣3(𝑎2) = 2,

and all other coefficients have larger valuation. Moreover, 𝑓(𝑛)
9

≡ 1− 𝑛2 (mod 3). It

follows by Hensel’s Lemma that 𝑓 will have exactly two solutions in Z3.
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