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Abstract. Let K be a number field with ring of integers OK . We
prove that if 3 does not divide [K : Q] and 3 splits completely in
K, then there are no exceptional units in K. In other words, there
are no x, y ∈ O×

K with x + y = 1. Our elementary p-adic proof
is inspired by the Skolem-Chabauty-Coleman method applied to
the restriction of scalars of the projective line minus three points.
Applying this result to a problem in arithmetic dynamics, we show
that if f ∈ OK [x] has a finite cyclic orbit in OK of length n then
n ∈ {1, 2, 4}.

1. Introduction and Main Result

Let K be a number field of degree d over Q and let OK be the
ring of integers of K. The set EK := {x ∈ O×K : 1 − x ∈ O×K} of
exceptional units in K is well-known to be finite, dating back to Siegel
[Sie21]. Let S be a finite set of places of K containing all infinite
places. Exceptional units and exceptional S-units (which allow both x
and 1−x to be S-units) remain of substantial practical interest because
of a wide variety of applications to number theory and other fields.
These include: enumerating elliptic curves over K with good reduction
outside a fixed set of primes [Sma97]; understanding finitely generated
groups, arithmetic graphs, and recurrence sequences [EGST88]; and
many Diophantine problems [Gyo92].
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Each exceptional unit corresponds to a solution in O×K to a special
unit equation of the form

x+ y = 1 .(1)

Unit (resp. S-unit) equations are more general equations of the form

ax+ by = 1(2)

in units (resp. S-units) of a number field. Several explicit upper bounds
have been obtained for the number of solutions and for the heights
of the solutions of (1) and (2). The latter results on the height are
effective. Evertse [Eve84] obtained a bound for the number of solutions
of (2) which depends only on s = #S. Evertse’s bound is exponential
in s. The “true” upper bound is conjectured by Stewart to be sub-
exponential (see p. 120 of [EGST88].) The first explicit bounds for the
heights of the solutions of (2) were established by Győry [Gyo74] using
Baker’s method. In terms of S, the best known bounds for the heights
of the solutions of (2) are due to [Gyo19].

Other work focuses on low-degree number fields and/or computation.
For instance, [Nag70] and [NS98] study the number of exceptional units
in fields of degree 3 and 4. Over low-degree number fields, there has also
been recent progress computing the set of solutions to general S-unit
equations fields [AKMRVW18] in practice and computing sets of ex-
ceptional units a test-case for computations by variants of Chabauty’s
method [D-CW15, Tri19].

Instead of studying low-degree K or general upper bounds, we im-
pose a local condition on K, showing:

Theorem 1.1. Let K be a number field. Suppose that 3 - [K : Q] and
3 splits completely in K. Then there are no exceptional units in K. In
other words, there is no pair x, y ∈ O×K such that x+ y = 1.

Remark 1.2. The set of degree d polynomials in Z[x] which generate
number fields where 3 splits completely have positive density (ordered

by height). Indeed, if g(x) =
∑d

i=0 aix
i satisfies v3(ad−i) = i(i − 1)/2

for all i, a Newton polygon computation shows that the roots of g have
distinct 3-adic valuations. If g is also irreducible then Q[x]/(g(x)) is
a field where 3 splits completely. The set of number fields K where
3 splits completely is expected to have positive density in the set of
degree d number fields ordered by discriminant (for any d); there are
precise conjectures of what this density should be [Bha07].

Theorem 1.1 does not give the first-known infinite family of number
fields of high degree without exceptional units. Indeed, if any prime p
above 2 in K has residue field Fp

∼= F2 then there are no exceptional
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units in K for a trivial reason. The values x and 1−x cannot simulta-
neously be non-zero modulo p. To our knowledge, Theorem 1.1 yields
the first-known infinite family of number fields of high degree without
exceptional units outside of these trivial examples.

Remark 1.3. The hypothesis that 3 - [K : Q] in Theorem 1.1 is nec-
essary. The set of degree 3 number fields containing exceptional units
has been well-understood since at least [Nag70]. One can construct
infinitely many degree 3 number fields with an exceptional unit and
where 3 splits completely as follows:

Choose an integer c ≡ 40 (mod 81). Let g(x) = (x + c)x(x − 1) −
2x + 1, which is irreducible over Q be the rational root theorem. Let
α be a root of g. Let K = Q(α). Since NmK/Q(α) = −g(0) = −1
and NmK/Q(1− α) = g(1) = −1, we see that α is an exceptional unit.
Since the minimal polynomial of (α − 2)/3 , namely 1

27
g(3x + 2) =

x3 + c+5
3
x2 + c+2

3
x + 2c+1

27
, has integer coefficients and is congruent to

x(x− 1)(x+ 1) modulo 3, we see that 3 splits completely in K.

Remark 1.4. If we replace the hypotheses “3 - [K : Q] and 3 splits
completely in K” with “5 - [K : Q] and 5 splits completely in K” then
Theorem 1.1 becomes false. Let g(x) = x3 − 4x2 + x+ 1, let α be any
root of g, and let K = Q(α). Then 5 splits completely in K. Moreover,
NmK/Q(α) = −g(0) = −1 and NmK/Q(1 − α) = g(1) = −1, so α and
1− α are both units, i.e. α is an exceptional unit.

Proof. Suppose that u, v ∈ O×K satisfy −u − v = 1, so that −u and
−v are exceptional units. Since 3 splits completely in K, there are
d embeddings OK ↪→ Z3. Let u1, . . . , ud be the images of u in Z3

under these embeddings. Since u and v are units, ui ∈ 1 + 3Z3 for all
i ∈ {1, . . . , d}. Also, NmK/Q(u),NmK/Q(v) ∈ Z× = {±1}. We have

d∏
i=1

ui = NmK/Q(u) = 1 and
d∏

i=1

(1 + ui) = NmK/Q(−v) = (−1)d .

We see that n = 1 is a zero of the 3-adic analytic function

f(n) := (1 + un1 ) · · · (1 + und)− (−1)d
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and

f(−n) =
d∏

i=1

(1 + u−ni )− (−1)d

=
d∏

i=1

u−ni

d∏
i=1

(1 + uni )− (−1)d

=
d∏

i=1

(1 + uni )− (−1)d

= f(n) .

In particular, expanding f as a p-adic power series, all coefficients in
odd degrees are zero. Now,

f(n) = −(−1)d +
d∏

i=1

(1 + exp(n log ui)) .

Let v3 be the 3-adic valuation with v3(3) = 1. Since v3(log ui) ≥ 1 and
exp converges when v3(n log ui) > 1/2 (see [Gou97]), this expression
converges for all n ∈ Z3 .

Expanding f as a power series,

f(n) = −(−1)d+
d∏

i=1

(2+n log ui+
n2

2
(log ui)

2+
n3

3!
(log ui)

3+· · · ) =:
∞∑
j=0

ajn
j .

We compute

a0 = 2d − (−1)d , a1 = 0 , a2 = 2d−3
d∑

i=1

(log ui)
2 , and a3 = 0 .

Moreover, for all j ≥ 4, we have v3(aj) ≥ 3. Since v3(a2) ≥ 2 and
f(1) = 0 we have v3(a0) ≥ 2. But v3(2

d − (−1)d) ≥ 2 if and only if
3|d . �

Remark 1.5. The inspiration for the proof of Theorem 1.1 is a variant
of the method of Skolem-Chabauty-Coleman applied to the restriction
of scalars of P1

OK
r {0, 1,∞} from OK to Z. In this setting, P1

OK
r

{0, 1,∞} embeds into its generalized Jacobian Gm,OK
×Gm,OK

via the
Abel-Jacobi map x 7→ (x, x − 1). To prove that P1 r {0, 1,∞} = ∅,
we consider the restriction of scalars of the Abel-Jacobi map. In this
language, the proof of Theorem 1.1 amounts to showing that for any
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unit u ∈ O×K the intersection

Eu := (ResOK/ZP1 r {0, 1,∞})(Z3) ∩ {un : n ∈ Z} × O×K
inside (ResOK/Z(Gm×Gm))(Z3) is empty. Here, the closure on the right
is respect to the 3-adic topology. To conclude,

⋃
u∈O×

K
Eu = ∅ is the

set exceptional units in K. See [Tri19] for a more general discussion of
using Skolem-Chabauty-Coleman applied to the restriction of scalars
of curves to compute exceptional S-units.

2. An Application of Theorem 1.1

We share an application in arithmetic dynamics communicated to
the author by W ladys law Narkiewicz.

Corollary 2.1. Let K be a number field. Suppose that 3 - [K : Q]
and 3 splits completely in K. Suppose that f ∈ OK [x] has a finite
orbit of size n in OK, (i.e., that there exist distinct a0, . . . , an−1 ∈ OK

such that f(ai) = ai+1 for i ∈ {0, . . . n− 2} and f(an−1) = a0.) Then,
n ∈ {1, 2, 4}.
Proof. Since OK embeds in Z3, the p = 3 case of Theorem 2 of [Pez94]
says that n ∈ {1, 2, 3, 4, 6, 9}. If n is a multiple of 3, replace f with its
(n/3)-times iterate so that f has finite orbit in OK of size exactly 3.

Since (a − b)|(f(a) − f(b)), it follows that −a1−a2
a0−a1 ,−

a2−a0
a0−a1 ∈ O

×
K .

These sum to 1 and are therefore exceptional units. (This observation
appears in [NP97].) There are no exceptional units in K, so this is a
contradiction, completing the proof.

In fact, it is well-known (and elementary to prove) that there is a
polynomial in OK [x] with a finite orbit of odd order in OK if any only
if there is an exceptional unit in K. Using this fact, one can conclude
that n is a power of 2 without using Theorem 2 of [Pez94]. �
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