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Abstract

In 2016, Vizovska proved that the E8 lattice gives the densest sphere
packing problem in 8-dimesions [1]. Shortly thereafter, Cohn, Kumar,
Miller, Radchenko, and Viazovska proved that the Leech lattice gives
the densest sphere packing in 24-dimensions [2]. Their proofs find
feasible solutions to the the Cohn-Elkies LP-method [3] to give upper
bounds on the density of sphere packings in 8 and 24 dimensions
that match sphere packings centered on the E8 and Leech lattice
respectively.

We prove that in contrast to the situation in dimensions 8 and 24,
the LP-method is insufficient to prove that the densest known sphere
packing is indeed the densest sphere packing in 12 and 16 dimen-
sions. We also provide evidence that the same is true in dimensions
20, 28, 32, and 36. The obstructions comes from modular forms.
Moreover, we describe a general method involving linear program-
ming over spaces of modular forms which appears to be the obstruc-
tion making the LP-method insufficient to solve the sphere packing
problem in a wide range of dimensions.

Sphere Packing Definitions/Notation

• A sphere packing P in Rd is a disjoint union of open unit balls⋃
p∈P B(p, 1) for some subset P ⊂ Rd.

• The upper density of a sphere packing P is defined to be

∆P := lim sup
r→∞

sup
p∈Rn

vol(B(p, r) ∩ P)
vol(B(p, r))

.

• The sphere packing constant (in dimension d) is
∆(:= ∆d) := sup

P⊂Rn

Sphere Packing

∆P.

• The center density

δP := ∆P
B(0, 1)

= lim sup
r→∞

sup
p∈Rn

#(B(p, r) ∩ P )
vol(B(p, r))

,

measures the number of center points per unit volume of a
packing.

Analytic Definitions/Notation

• Jd
2−1 is the Bessel function of the first kind of order d

2 − 1.
• Given function f : R→ R, define the d-dimensional radial
Fourier transform by

f̂ (t) := (2π)d/2

k(d−2)/2

∫ ∞
0

x
d
2f (x)Jd−2

2
(xt)dx

if the integral converges. If we set F : Rd→ R and F̂ : Rd→ R
by F (x) = f (|x|) and F̂ (t) = f̂ (|t|), then F̂ is the usual Fourier
transform of F .

• A function f : R→ R is admissible if there is a constant ε > 0
such that both |f (x)| and |f̂ (x)| are O(n−d−ε).

• δx denotes a point mass at x.

Modular Forms Definitions/Notation

• We denote the upper half plane by
H := {z ∈ C : im(z) > 0}.

• Define the congruence subgroup Γ0(N) by

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
• Given a matrix

γ :=
(
a b
c d

)
,

and an integer k, define the slash operator on functions
g : H → C by

g|k,γ(z) := (det γ)k/2

(cz + d)k
g

(
az + b

cz + d

)
.

• The space Mk(N) = Mk(Γ0(N)) of modular forms of weight k
and level N is defined to be the set of functions g : H → C such
that

g|γ(z) = g(z) for all γ ∈ Γ0(N).

• Any g ∈Mk(N) has a q-expansion of the form
∞∑
n=0

anq
n.

•Ek(N) denotes the set of Eisenstein series of weight k and level
Γ0(N). The Eisenstein series have q-expansions

Eφ
t := δ(φ)

2
L(1− k, φ) +

∞∑
n=1

σφ,φk−1(n)qtn,

where u2t|N ,
φ : Z→ (Z/uZ)× ∪ {0} → C

is a primitive Dirichlet character for u extended to a map from Z
to C, and

σφ,φk−1(x) :=


∑
m|x,
m>0

φ(x/m)φ(m)mk−1 if x ∈ Z,

0 if x /∈ Z.

Moreover, there is a unique Eisenstein series for each pair (φ, t)
and these series are linearly independent.

• Let Ek(N) be the span of Ek(N).
• A modular form is cuspidal (a cusp form) if it vanishes at all of
the cusps of Γ0(N)\H. The space of cusp forms is Sk(N).

• Let Ck(N) be the basis of Sk(N) consisting of simultaneous
Hecke eigenforms normalized so that the first non-zero coefficient
of the q-expansion is equal to 1.
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Main Result: LP Method Cannot Prove Densest Known Packing is Optimal for d ∈ {12, 16}.

Dimension Largest Known δP New Lower Bound to LP LP Upper Bound N k T

8 0.0625 0.0625 1 4 1
12 0.03704 0.05978 0.06279 24 6 4
12 0.03704 ≈ 0.062319 0.06279 192 6 34
16 0.0625 0.10394 0.10738 24 8 6
20 0.13154 ≈ 0.25786 0.27855 24 10 9
24 1.0 1.0 1 12 2
28 1.0 ≈ 4.57598 5.02059 24 14 9
32 2.5658 ≈ 28.08588 32.06222 24 16 12
36 4.4394 ≈ 214.5447 258.54994 24 18 11

Table 1: Best lower bounds to the LP method in various dimensions. The exact bounds in dimensions 12 and 16 come
from running Algorithm 1 using the PPL LP solver in Sage. Bounds marked with ≈ have not yet been proved, but
were identified running Step 2 of Algorithm 1 using the approximate LP solver GLPK. In these cases, it is likely that
our algorithm would give a slightly lower bound if run with an exact LP solver. The bound is proved by constructing a
suitable modular form f ∈Mk(Γ0(N)) such that the first non-zero coefficient after a0 in the q-expansion of f is aT .
In particular, the second and fourth rows certify that the LP method is insufficient to prove that the densest known
sphere packings in 12 and 16 dimensions are actually the densest sphere packings in those dimensions.

Introduction to the LP Method

The LP Method, developed by Cohn and Elkies in [3] uses linear
programming to prove upper bounds on the density of sphere pack-
ings. It is the source of the best known upper bounds for the center
density of sphere packings in dimensions 4 through 36. The method
was used to prove that the E8 and Leech lattices yield optimal sphere
packings in dimensions 8 and 24 respectively.
The LP Method upper bounds the density of sphere packing in di-
mension d by solving the following optimization problem.

Problem 1.

minimize f (0)
f̂ (0)

· r
d

2d
=
(

d

√
f (0)
f̂ (0)

· r
2

)d

subject to f : R→ R is an admissible function (1.i)
f (0) > 0 (1.ii)
f̂ (0) > 0 (1.iii)
f (x) ≤ 0 for |x| ≥ r (1.iv)
f̂ (t) ≥ 0 for all t (1.v).

Theorem 1 (Cohn-Elkies [3]).
Let X be the optimal value for Problem 1. Then, X ≥ δP for any
sphere packing P ⊂ Rd.

Remark.
While the objective function of Problem 1 is non-linear, it is invariant
under scaling the input to f . Normalizing f by fixing the value of
f (0)
f̂ (0) and linearizing the objective function by replacing it with its dth
root gives a linear program. Alternately, normalizing f by fixing r
gives a different linear program.

A Dual to Problem 1

The standard approach for bounding linear programs is to consider
the dual problem. The dual to Problem 1 is essentially Problem 2.

Problem 2.

maximize b0
a0
Rd

2d =
(

d

√
b0
a0
R
2

)d
subject to µ1 and µ2 are measures on R, (2.i)

a0, b0, R > 0 are real numbers, (2.ii)
µ1 − a0δ0 and µ2 − b0δ0 are positive measures, (2.iii)
µ1 − a0δ0 is identically zero on {x : |x| < R}, (2.iv)∫
R f (x)µ1 =

∫
R f̂ (t)µ2 for all f admissible. (2.v)

Remark.
As with Problem 1, Problem 2 is invariant under scaling and gives
rise to two distinct linear programs. In this project, we study the
case where R is fixed.

Proposition 2.
Let X and Y be feasible values for Problem 1 and 2 respectively.
Then, Y ≤ X .

Proof.
Scaling f , µ1 and µ2, we may assume r = R = 1. Then,

f (0)
f̂ (0)

≥ 1
a0f̂ (0)

∫ ∞
0

f (x)µ1 = 1
a0f̂ (0)

∫ ∞
0

f̂ (t)µ2 ≥
b0

a0
.

Why Good Lower Bounds Are Hard to Find

• Constructing distributions which are identically zero on an
interval (0, R) and satisfy positivity conditions on the Fourier
transform is difficult.

• Testing whether general measures are positive is difficult and
cannot readily be implemented with off-the-shelf LP solvers.

Restricting to Measures with Discrete
Support

Optimizing over spaces of µ1 and µ2 which are discretely supported
solves many of the computational challenges in Problem 2. We con-
sider the case where µ1 and µ2 are sums of δ-functionals.
Let {x(n)}∞n=0 and {t(n)}∞n=0 be increasing sequences with x(0) =
t(0) = 0 and consider µ1 and µ2 of the form

(µ1, µ2) =
( ∞∑
n=0

anδx(n),
∞∑
n=0

bnδt(n)

)
.

Problem 2 restricts to

Problem 3.

maximize b0
a0
Rd

2d =
(

d

√
b0
a0
R
2

)d
subject to a0, b0, R > 0 are real numbers, (3.i)

an = 0 when 0 < x(n) < R, (3.ii)
an, bn ≥ 0 for all n, (3.iii)
∞∑
n=0

anf (x(n)) =
∞∑
n=0

bnf (t(n)) for f admissible. (3.iv)

In particular, any lower bound for Problem 3 is a lower bound for
Problems 1 and 2.

An Algorithm for Bounding the LP Method

We assume that N is not divisible by 162, 92 or p2 for any prime
p > 3. This guarantees that Mk(N) has a basis of forms (extending
the set of Eisenstein series) with all real coefficients.
Let

{g1, . . . , gdimMk(N)}

be such a basis of Mk(N). Let hj := ikgj|Wn
be ik times the image

of gj under the full level N Atkin-Lehner involution. Write the q-
expansions of the hj and gj as

gj :=
∞∑
n=0

ajnq
n hj :=

∞∑
n=0

bjnq
n.

Fix integers T and M with 1 ≤ T < dimMk(N) < M .
Algorithm 1:
Input: k = d/2 with 2|k, a positive integer N which is not divisible
by 162, 92 or p2 for any prime p > 3 and integers T,M satifying
1 ≤ T < dimMk(N) < M .
Output: Either returns a value X which is a lower bound for the
optimal value of Problems 1 and 2, or returns fail.

1. Compute the q-expansions of a basis for the space of modular
forms of weight k and level N up to precision M .

2. Solve the following linear program:
Problem 4.

maximize
∑

xjb
j
0

subject to 1 =
∑

xja
j
0 (3.i)

0 =
∑

xja
j
n for 1 ≤ n < T (3.ii)

0 ≤
∑

xja
j
n for T ≤ n ≤M (3.iii)

0 ≤
∑

xjb
j
n for 1 ≤ n ≤M (3.iv)

3.Given a feasible solution to Problem 4, let g =
∑
xjg

j and
h =

∑
xjh

j. Check that all of of the coefficients of the
q-expansions of g and h are non-negative.

4. If this check fails, return fail. If this check succeeds, return
X := (

∑
xjb

j
0) ·
(
T

2N
)d/2.

If the algorithm fails in step 4, one can increase M and attempt
the optimization problem again. In practice, M = 2 · dimMk(N)
typically seems to be sufficient for the algorithm to succeed.

Main Theorem

Theorem 3.
Algorithm 1 (above) is correct and runs in finite time.

Proof.
Proposition 4 says that Problem 4 is a relaxation of Problem 3
with x(n) =

√
n and t(n) = 2

√
n/N. The only missing condi-

tion is (3.iii) for n > M . The coefficients of the modular forms
are rational, so equality conditions can be checked precisely by
computer. The check in Step 3 certifies that (3.iii) holds or re-
turns fail if it does not. This proves correctness.
Computing truncated q-expansions, solving finite-dimensional
linear programs and the positivity check laid out in the right-
hand column are finite-time, so Algorithm 1 is finite-time.

Algorithm 1 in Practice/Next Steps

• Numerical precision is the biggest obstacle to running Algorithm
1 in practice. Cusp forms coefficients grow much more slowly than
Eisenstein series coefficients, so LP solvers overflow on moderate
parameters. A quad precision solver would give stronger results.

• Truncating computation time would give results for more d.
• In the next code rewrite, Algorithm 1 will be reorganized to more
easily extract exact bounds from an approximate LP solver.

• Algorithm 1 can be modified to apply when N is divisible by
larger squares, with modular forms of nontrivial nebentype,
and/or with sums twisted by Dirichlet characters. In these cases,
we expect that the space of forms with positive real coefficients is
relatively small. We hope to investigate this in future work.

• We hope to relate this approach to the constructions in [1] and [2]
to nail down best possible LP bounds in many dimensions.

For More Information

• For a preprint or code, email ngtriant@mit.edu.
• This poster will be available at

http://www-math.mit.edu/~ngtriant/research.html

This material is based upon work supported by the MIT Mathematics Department,
a National Science Foundation Graduate Research Fellowship under Grant No.
1122374, and Microsoft Research New England. Most of the work was completed
while the author was an intern at Microsoft Research New England.

An Analogue of Poisson/Voronoi Summation

Algorithm 1 depends on the following summation forumula, which is
analogous to the Poisson and Voronoi summation formulas.

Proposition 4.
• Let d = 2k for k ∈ Z.
• Let g ∈Mk(Γ0(N)) be a modular form of weight k and level

Γ0(N).

• Let wN =
(

0 −1
N 0

)
.

• Let
g̃(z) = g|wN(z) = ik

Nk/2zk
g

(
− 1
Nz

)
be ik times the image of g under the full level N Atkin-Lehner
operator.

• Let the q-expansions of g and g̃ be

g(z) =
∞∑
n=0

anq
n, g̃(z) =

∞∑
n=0

bnq
n.

Then,
∞∑
n=0

anf (
√
n) =

(
2√
N

)d/2 ∞∑
n=1

bnf̂

(
2
√
n√
N

)
where f̂ denotes the d-dimensional radial Fourier transform.

Proof Sketch.
The proof is essentially standard. It follows by rewriting the L-
function associated to g via Mellin inversion, shifting the contour of
integration from real part d + ε/2 to −ε/2, applying the functional
equation for modular L-functions, changing variables to move the
contour back, and undoing the Mellin inversion. The a0 and b0 terms
arise from shifting the contour across possible poles.

Remark.
By adjusting the multiplicative constanct appropriately, Proposition
4 can be generalized to the case of modular forms of any nebentype
and/or to sums twisted by a Dirichlet character.

Checking Positivity of Modular Form
Coefficients

Given a modular form g ∈Mk(N), Algorithm 1 requires us to verify
whether all of the coefficients of the q-expansion of g and g̃ are non-
negative.
We take the following five-step approach to check whether the coef-
ficients of a given modular form g are non-negative.
1.Write g = ge + gc, where

ge = e0 +
∞∑
n=1

enq
n ∈ Ek(N)

is the Eisenstein part of g and

gc =
∞∑
n=1

cnq
n ∈ Sk(N)

is the cuspidal part of g.
2. Express ge as a linear combination of Eisenstein series and use

explicit formulas to get a bound of the form
en ≥ A · σk−1(n) > Ank−1

for some constant A ∈ R.
3. Express gc as a linear combination of normalized eigenforms and

use Deligne’s Weil bounds to get a bound of the form
|cn| ≤ Bσ0(n)n(k−1)/2 ≤ Bnk/2.

for some constant B ∈ R.
4. Compare Ank−1 to Bnk/2 to show that there is a Q ∈ Z such

that en + cn ≥ 0 for all n ≥ Q.
5. Explicitly compute the coefficients of g for 0 ≤ n < Q to check
en + cn ≥ 0 for all n ≥ 0.

Positivity Check in Detail

Steps 1, 4, and 5 are straightforward using built-in functions in
Magma and some linear algebra.

Step 3. Write gc in the form
gc =

∑
h∈Ck(N)

yhh.

As a consequence of Deligne’s proof of the Weil conjectures [4],
the coefficient of n in the q-expansion of h is bounded above by
σ0(n)n(k−1)/2. By the triangle inequality, we may take

B =
∑

h∈Ck(N)

yh.

Step 2. For simplicity, we assume N is not divisible by 162, 92 or p2

for any prime p > 3. In this case, if u2|N , then u|24. In particular,
φ is a real character for all Eφ

t ∈ Ek(N). In this case,
φ(n/m)φ(m) = φ(n)φ(m)2 = φ(n)

for all m|n and for any n ∈ Z, so

σφ,φk−1(x) = φ(x)σk−1(x)
and so

Eφ
t := δ(φ)

2
L(1− k, φ) +

∞∑
n=1

φ(n/t)σk−1(n/t)qn.

There are constants xφt such that

ge :=
∑
t|N

∑
φ prim. for u

u2t|N

xφtE
φ
t ,

whence

en =
∑
t|N

 ∑
φ prim. for u

u2t|N

φ(n/t)xφt

σk−1(n/t). (1)

For n/t ∈ Z, we have the inequality
σk−1(n)
σk−1(t)

≤ σk−1(n/t) ≤ σk−1(n)
tk−1 .

Applying either the lower or upper bound based on whether the sum
over φ in (1) is positive or negative, and summing over t gives

en ≥ Anσ
n
k−1

for some An ∈ R. Now, An depends only on the n mod N , so we
may take

A := min
n∈{1,...,N}

An.
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